Likeanonymous methods,
iterators in C# are very complex syntactic sugar.
You could do it all yourself (after all, you did have to do
it all yourself in earlier versions of C#),
but the compiler transformation makes for much greater convenience.

The idea behind iterators is that they take a function withyield return
statements
(and possible some yield break statements)
and convert it into a state machine.
When you yield return, the state of the function is
recorded, and execution resumes from that state the next time the
iterator is called upon to produce another object.

Here’s the basic idea:
All the local variables of the iterator (treating iterator parameters
as pre-initialized local variables, including the hidden this
parameter)
become member variables of a helper class.
The helper class also has an internal state member that keeps
track of where execution left off and an internal current
member that holds the object most recently enumerated.

class MyClass {

 int limit = ;

 public MyClass(int limit) { this.limit = limit; }

 public IEnumerable<int> CountFrom(int start)

 {

  for (int i = start; i <= limit; i++) {

   yield return i;

  }

 }

}

The CountFrom method produces an integer
enumerator that spits out the integers starting at start
and continuing up to and including limit.
The compiler internally converts this enumerator into
something like this:

class MyClass_Enumerator : IEnumerable<int> {

  int state$ = ;// internal member

  int current$;  // internal member

  MyClass this$; // implicit parameter to CountFrom

  int start;      // explicit parameter to CountFrom

  int i;          // local variable of CountFrom

  public int Current {

   get { return current$; }

  }

  public bool MoveNext()

  {

   switch (state$) {

   case : goto resume$;

   case : goto resume$;

   case : return false;

   }

 resume$:;

   for (i = start; i <= this$.limit; i++) {

    current$ = i;

    state$ = ;

    return true;

 resume$:;

   }

   state$ = ;

   return false;

  }

  … other bookkeeping, not important here …

 }

 public IEnumerable<int> CountFrom(int start)

 {

  MyClass_Enumerator e = new MyClass_Enumerator();

  e.this$ = this;

  e.start = start;

  return e;

 }

用dnSpy反编译上面的代码,同时在配置中

得到如下代码,是一个状态机

    // Token: 0x02000005 RID: 5
internal class MyClass
{
// Token: 0x06000006 RID: 6 RVA: 0x000020C9 File Offset: 0x000002C9
public MyClass(int limit)
{
this.limit = limit;
} // Token: 0x06000007 RID: 7 RVA: 0x000020E1 File Offset: 0x000002E1
public IEnumerable<int> CountFrom(int start)
{
MyClass.<CountFrom>d__2 <CountFrom>d__ = new MyClass.<CountFrom>d__2(-);
<CountFrom>d__.<>4__this = this;
<CountFrom>d__.<>3__start = start;
return <CountFrom>d__;
} // Token: 0x04000001 RID: 1
private int limit = ; // Token: 0x02000006 RID: 6
[CompilerGenerated]
private sealed class <CountFrom>d__2 : IEnumerable<int>, IEnumerable, IEnumerator<int>, IDisposable, IEnumerator
{
// Token: 0x06000008 RID: 8 RVA: 0x000020F8 File Offset: 0x000002F8
[DebuggerHidden]
public <CountFrom>d__2(int <>1__state)
{
this.<>1__state = <>1__state;
this.<>l__initialThreadId = Environment.CurrentManagedThreadId;
} // Token: 0x06000009 RID: 9 RVA: 0x00002113 File Offset: 0x00000313
[DebuggerHidden]
void IDisposable.Dispose()
{
} // Token: 0x0600000A RID: 10 RVA: 0x00002118 File Offset: 0x00000318
bool IEnumerator.MoveNext()
{
int num = this.<>1__state;
if (num != )
{
if (num != )
{
return false;
}
this.<>1__state = -;
int num2 = this.<i>5__1;
this.<i>5__1 = num2 + ;
}
else
{
this.<>1__state = -;
this.<i>5__1 = this.start;
}
if (this.<i>5__1 > this.<>4__this.limit)
{
return false;
}
this.<>2__current = this.<i>5__1;
this.<>1__state = ;
return true;
} // Token: 0x17000001 RID: 1
// (get) Token: 0x0600000B RID: 11 RVA: 0x0000219C File Offset: 0x0000039C
int IEnumerator<int>.Current
{
[DebuggerHidden]
get
{
return this.<>2__current;
}
} // Token: 0x0600000C RID: 12 RVA: 0x000021A4 File Offset: 0x000003A4
[DebuggerHidden]
void IEnumerator.Reset()
{
throw new NotSupportedException();
} // Token: 0x17000002 RID: 2
// (get) Token: 0x0600000D RID: 13 RVA: 0x000021AB File Offset: 0x000003AB
object IEnumerator.Current
{
[DebuggerHidden]
get
{
return this.<>2__current;
}
} // Token: 0x0600000E RID: 14 RVA: 0x000021B8 File Offset: 0x000003B8
[DebuggerHidden]
IEnumerator<int> IEnumerable<int>.GetEnumerator()
{
MyClass.<CountFrom>d__2 <CountFrom>d__;
if (this.<>1__state == - && this.<>l__initialThreadId == Environment.CurrentManagedThreadId)
{
this.<>1__state = ;
<CountFrom>d__ = this;
}
else
{
<CountFrom>d__ = new MyClass.<CountFrom>d__2();
<CountFrom>d__.<>4__this = this.<>4__this;
}
<CountFrom>d__.start = this.<>3__start;
return <CountFrom>d__;
} // Token: 0x0600000F RID: 15 RVA: 0x00002207 File Offset: 0x00000407
[DebuggerHidden]
IEnumerator IEnumerable.GetEnumerator()
{
return this.System.Collections.Generic.IEnumerable<System.Int32>.GetEnumerator();
} // Token: 0x04000002 RID: 2
private int <>1__state; // Token: 0x04000003 RID: 3
private int <>2__current; // Token: 0x04000004 RID: 4
private int <>l__initialThreadId; // Token: 0x04000005 RID: 5
private int start; // Token: 0x04000006 RID: 6
public int <>3__start; // Token: 0x04000007 RID: 7
public MyClass <>4__this; // Token: 0x04000008 RID: 8
private int <i>5__1;
}
}

The enumerator class is auto-generated by the compiler
and, as promised, it contains two internal members for the
state and current object,
plus a member for each parameter
(including the hidden this parameter),
plus a member for each local variable.
The Current property merely returns the current object.
All the real work happens in MoveNext.

To generate the MoveNext method, the compiler
takes the code you write and performs a few transformations.
First, all the references to variables and parameters need to
be adjusted since the code moved to a helper class.

Notice that this transformation is quite different fromthe enumeration model we built based on coroutines and fibers.
The C# method is far more efficient in terms of memory usage
since it doesn’t consume an entire stack (typically a megabyte in size)
like the fiber approach does.
Instead it just borrows the stack of the caller,
and anything that it needs to save across calls to MoveNext
are stored in a helper object (which goes on the heap rather than the stack).
This fake-out is normally quite effective—most
people don’t even realize that it’s happening—but there are places
where the difference is significant, and we’ll see that shortly.

The implementation of iterators in C# and its consequences (part 1) Raymond Chen的更多相关文章

  1. What is the yield keyword used for in C#?

    What is the yield keyword used for in C#? https://stackoverflow.com/a/39496/3782855 The yield keywor ...

  2. 一次C#和C++的实际应用性能比较(C++允许我们使用任何手段来提高效率,只要愿意做出足够的努力)

    05年时,在微软的Rico Mariani做了一次实际应用的C#和C++的性能比较.事情起源于微软著名的元老Raymond Chen(在下敬仰的超级牛人)用C++写了一个英汉词典程序,来描述讲解优化C ...

  3. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  4. Python 的上下文管理器是怎么设计的?

    花下猫语:最近,我在看 Python 3.10 版本的更新内容时,发现有一个关于上下文管理器的小更新,然后,突然发现上下文管理器的设计 PEP 竟然还没人翻译过!于是,我断断续续花了两周时间,终于把这 ...

  5. Implementation with Java

    Implementation with Java From:http://jcsc.sourceforge.net In general, follow the Sun coding conventi ...

  6. Python标准模块--Iterators和Generators

    1 模块简介 当你开始使用Python编程时,你或许已经使用了iterators(迭代器)和generators(生成器),你当时可能并没有意识到.在本篇博文中,我们将会学习迭代器和生成器是什么.当然 ...

  7. Design and Implementation of the Sun Network File System

    Introduction The network file system(NFS) is a client/service application that provides shared file ...

  8. [转]Objective-c中@interface、@implementation、@protocal

    原处:http://blog.csdn.net/l271640625/article/details/8393531 以下Objective-c简称OC 从事java开发的程序员们都知道,在java中 ...

  9. Implementation Model Editor of AVEVA in OpenSceneGraph

    Implementation Model Editor of AVEVA in OpenSceneGraph eryar@163.com 摘要Abstract:本文主要对工厂和海工设计软件AVEVA的 ...

随机推荐

  1. TLS1.3 握手过程特性的整理

    1.密码协商 TLS协议中,密码协商的过程中Client在ClientHello中提供四种option 第一:client 支持的加密套件列表,密码套件里面中能出现Client支持的AEAD算法或者H ...

  2. syzkaller安装

    初始环境配置 sudo apt-get install subversion sudo apt-get install g++ sudo apt-get install git sudo apt in ...

  3. P2P system: GNUTELLA

    P2P system: GNUTELLA GNUTELLA是第一个经论证的分布式的peer-to-peer system. Napster的一个重大问题是涉及到间接侵权,所以GNUTELLA消除the ...

  4. Mybatis获取自增主键值

    1.配置文件变化 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper PUBLI ...

  5. js中数组元素的添加和删除

    js中数组元素常用添加方法是直接添加.push方法以及unshift方法 删除方法则是delete.pop.shift 集修改方法为一身的则是splice 1.添加: (1)直接添加通常都是这样 va ...

  6. spark提交任务报错: java.lang.SecurityException: Invalid signature file digest for Manifest main attributes

    spark提交任务报错: java.lang.SecurityException: Invalid signature file digest for Manifest main attributes ...

  7. 转,sql server update set from inner 批量修改的使用

    SQL update select结合语句详解及应用   QL update select语句 最常用的update语法是: 1 2 UPDATE TABLE_NAME SET column_name ...

  8. ES WIndows 安装 ES与ES-head

    一.ES的安装 1.到ES官网下载ES 安装ES前,需要安装JDK1.8以上版本 https://www.elastic.co/downloads/elasticsearch 2.解压ES 3.安装E ...

  9. StringUtils的isBlank()方法

    在校验一个String类型的变量是否为空时,通常存在3中情况 是否为 null 是否为 "" 是否为空字符串(引号中间有空格)  如: "     ". Str ...

  10. unsigned和signed

    int分为unsigned(无正负号)和signed(有正负号) 一般int默认为signed unsigned和unsigned int意思相同