luogu

问题本质是把\(a_i\)作为\(i\)的父亲,然后如果有环就不合法,否则每次要取数,要满足取之前他的父亲都被取过(父亲为0可以直接取),求最大价值

贪心想法显然是要把权值大的尽量放在后面,这等价于把权值小的尽量放在前面.所以如果当前最小的数没有父亲,显然直接取出来最优;如果有父亲,那么这个数应该在它的父亲被取之后马上取出来.这时我们把这两个点合并.之后重复此操作知道所有点被取完,就能得到答案

还有个问题是两个点合并后怎么取权值.两个点合并相当于两个序列合并,序列分别记为\(\{a_1,a_2...a_n\},\{b_1,b_2...b_m\}\),考虑什么时候\(\{a\}\)会放在\(\{b\}\)前面,\(\{a\}\)在前面的答案为\(ans_a+ans_b+n\sum_{j=1}^{m}b_j\),\(\{b\}\)在前面的答案为\(ans_a+ans_b+m\sum_{i=1}^{n}a_i\),\(\{a\}\)在前面当且仅当\(n\sum_{j=1}^{m}b_j\ge m\sum_{i=1}^{n}a_i\),等价于\(\frac{\sum a_i}{n}\le \frac{\sum b_j}{m}\),所以把权值设为里面点点权平均值即可.然后两个点\(a,b\)合并,会产生\(n\sum_{j=1}^{m}b_j\)的贡献,直接往答案里加即可

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=5e5+10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct node
{
LL w,sz,i;
bool operator < (const node &bb) const {return w*bb.sz!=bb.w*sz?w*bb.sz>bb.w*sz:i>bb.i;}
bool operator == (const node &bb) const {return w==bb.w&&sz==bb.sz&&i==bb.i;}
}a[N];
bool ban[N];
struct HEAP
{
priority_queue<node> q1;
void mntn(){while(!q1.empty()&&(ban[q1.top().i]||!(q1.top()==a[q1.top().i]))) q1.pop();}
void push(node x){q1.push(x);}
void pop(){mntn();q1.pop();}
node top(){mntn();return q1.top();}
}hp;
int n,fa[N],ff[N];
LL ans,sm;
int findf(int x){return ff[x]==x?x:ff[x]=findf(ff[x]);} int main()
{
n=rd();
for(int i=1;i<=n;++i) ff[i]=i;
for(int i=1;i<=n;++i)
{
fa[i]=rd();
if(fa[i])
{
int x=findf(i),y=findf(fa[i]);
if(x==y){puts("-1");return 0;}
ff[y]=x;
}
}
for(int i=1;i<=n;++i)
{
int w=rd();
hp.push((a[i]=(node){w,1,i}));
sm+=w;
}
ans=sm;
int gg=0;
for(int i=1;i<=n;++i) ff[i]=i;
for(int i=1;i<=n;++i)
{
int x=hp.top().i;
hp.pop();
if(findf(fa[x]))
{
int xx=findf(fa[x]);
ans+=a[xx].sz*a[x].w;
a[xx].w+=a[x].w,a[xx].sz+=a[x].sz;
hp.push(a[xx]);
ff[x]=xx;
}
else ff[x]=0,sm-=a[x].w,ans+=a[x].sz*sm;
ban[x]=1;
}
for(int i=1;i<=n;++i) ff[i]=findf(i);
printf("%lld\n",ans);
return 0;
}

luogu P4437 [HNOI/AHOI2018]排列的更多相关文章

  1. 洛谷 P4437 [HNOI/AHOI2018]排列(贪心+堆,思维题)

    题面传送门 开始 WA ycx 的遗产(bushi 首先可以将题目转化为图论模型:\(\forall i\) 连边 \(a_i\to i\),然后求图的一个拓扑序 \(b_1,b_2,\dots b_ ...

  2. 【LG4437】[HNOI/AHOI2018]排列

    [LG4437][HNOI/AHOI2018]排列 题面 洛谷 题解 题面里这个毒瘤的东西我们转化一下: 对于\(\forall k,j\),若\(p_k=a_{p_j}\),则\(k<j\). ...

  3. 【题解】Luogu P4436 [HNOI/AHOI2018]游戏

    原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...

  4. 【洛谷 P4437】 [HNOI/AHOI2018]排列(贪心,堆)

    题目链接 如果\(j<=k,a_{p[j]}!=p[k]\)可以理解为如果\(a_{p[j]}=p[k]\),那么\(k\)一定要放在\(j\)前面,也就是\(a_j\)在\(j\)前面. 于是 ...

  5. BZOJ5289 & 洛谷4437:[HNOI/AHOI2018]排列——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5289 https://www.luogu.org/problemnew/show/P4437 考虑 ...

  6. [HNOI/AHOI2018]排列 贪心

    题面 题解: 把题面的限制换成中文: 如果排在第k位的下标 = 排在第j位的值 ,那么k < j 换一个描述方式: 一个值为x的数要排在第x个数后面. 再换一个描述方式: \(fa[i] = a ...

  7. [HNOI/AHOI2018]排列

    [Luogu4437] 如果\(a[i]=j\)则序列\(p[]\)中\(j\)必须排在\(i\)前面,如果\(j\)不在范围内则不管,求一个式子\(\sum_{i=1}^n iw_{p[i]}\)的 ...

  8. 【题解】Luogu P4438 [HNOI/AHOI2018]道路

    原题传送门 实际就是一道简单的树形dp 设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值 边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上 ...

  9. BZOJ5289 HNOI/AHOI2018排列(贪心+堆)

    题面描述的相当绕,其实就是如果ai=j,重排后ai要在aj之后.同时每个ai有附属属性wi,要求最大化重排后的Σiwi. 容易发现这事实上构成一张图,即由j向i连边.由于每个点入度为1或0,该图是基环 ...

随机推荐

  1. Nginx-rtmp点播之业务流程分析

    1. 点播的播放流程分析 1.1 ngx_rtmp_cycle 在握手结束后,即进入该函数中做进一步处理. void ngx_rtmp_cycle(ngx_rtmp_session_t *s) { n ...

  2. CentOS 7下使用Apache2部署Django项目,解决文件名中含有中文报错的问题

    系统版本: CentOS 7.3Apache 2.4 Django 1.11 问题描述 Django项目涉及上传操作,上传文件名称含有中文,若使用runserver启动服务,没有问题!若将Django ...

  3. js调用后台接口进行下载

    js调用后台接口一定不能用ajax location.href=$$pageContextPath +'downfile/down.do?filname='+row.fileUrl;

  4. leetcode 547朋友圈

    方法一:染色法 类似于岛屿的个数也可以用染色法:通过深度优先搜索来做 使用一个数组来表示当前朋友a是否已经包含到已经遍历的朋友圈中,遍历所有的朋友,如果当前朋友没有在已经访问的朋友圈中,即visite ...

  5. vue类似tab切换的效果,显示和隐藏的判断。

    两者切换,动态显示对应的列表详情. 通过v-show的判断 数据驱动

  6. rest 参数与扩展运算符

    rest 参数与扩展运算符 1.rest 参数 ES6 引入 rest 参数(形式为...变量名),用于获取函数的多余参数,这样就不需要使用arguments对象了.rest 参数搭配的变量是一个数组 ...

  7. 基于 Open vSwitch 的 OpenFlow 实践

    目录 文章目录 目录 前文列表 Open vSwitch 基本概念 Open vSwitch 与 OpenFlow 的关系 通过 Open vSwitch 实践 OpenFlow 屏蔽数据包 重定向数 ...

  8. Squirrel GUI+ Phoenix 连接Hbase

    一. 参考 http://blog.csdn.net/maomaosi2009/article/details/45598823 二. 问题解决 >Squirrel Client Connect ...

  9. php使用装饰模式无侵入式加缓存

    <?php namespace App\Services; use Illuminate\Support\Facades\Log; use Illuminate\Support\Facades\ ...

  10. LeetCode.1128-等价多米诺骨牌对的数量(Number of Equivalent Domino Pairs)

    这是小川的第394次更新,第428篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第259题(顺位题号是1128).给定多米诺骨牌列表,当且仅当(a == c且b == d ...