题目链接

\(Description\)

给定一段数字序列(Ai∈[1,88]),求最长的两个子序列满足:

1.长度至少为5

2.一个子序列可以通过全部加或减同一个数来变成另一个子序列

3.两个子序列没有重叠部分

\(Solution\)

求不重叠最长重复子序列:

SA:

首先二分k,判断是否存在长度为k的不重叠的相同子序列

把排序后的后缀按ht分组,每组中后缀的ht>=k,这样满足相同序列长度至少为k的两个后缀一定在同一组中(且同一组中任意两个都满足)

然后在每组中判断是否有max{sa[]}-min{sa[]}>=k,这样可以满足没有重叠部分。若有一组满足,则存在。

SAM:

一个节点出现位置终点的集合(right)为其所有儿子节点right集合的并。而且这个点所代表的串一定在其子节点代表的串中出现过。

于是从底向上更新,我们可以得到每个点代表的串中 位置最靠左的右端点L和最靠右的右端点R。

如果R[i]-L[i]>=len[i],说明这个点代表的最长串重复出现且不重叠,可以用len[i]更新ans。实际上min(R[i]-L[i],len[i])即为每个点合法的答案。(后者写不写都对啊。。是因为最终答案的关系?)

清空son[]、tm[]!

对于要求2,其实可以看做两个子序列相邻两项差值都相等,如1,2,4,6与4,5,7,9,相邻两项差值的序列都为1,2,2,那么可以满足条件

原序列转化为差值序列,长度最后时要+1

SA:

//860K	125MS
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=2e4+5,MAX=88; int n,sa[N],ht[N],rk[N],sa2[N],A[N],tm[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Get_SA()
{
int *x=rk,*y=sa2,m=200;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]=A[i]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[i]]--]=i;
for(int p=0,k=1; k<n; k<<=1,m=p,p=0)
{
for(int i=n-k+1; i<=n; ++i) y[++p]=i;
for(int i=1; i<=n; ++i) if(sa[i]>k) y[++p]=sa[i]-k;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[y[i]]]--]=y[i]; std::swap(x,y), p=x[sa[1]]=1;
for(int i=2; i<=n; ++i)
x[sa[i]]=y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+k]==y[sa[i]+k]?p:++p;
if(p>=n) break;
}
}
void Get_ht()
{
for(int i=1; i<=n; ++i) rk[sa[i]]=i;
ht[1]=0;
for(int k=0,p,i=1; i<=n; ++i)
{
if(rk[i]==1) continue;
if(k) --k;
p=sa[rk[i]-1];
while(i+k<=n&&p+k<=n&&A[i+k]==A[p+k]) ++k;
ht[rk[i]]=k;
} }
bool Check(int k)
{
int mx=sa[1],mn=sa[1];
for(int i=2; i<=n; ++i)
if(ht[i]>=k) mx=std::max(mx,sa[i]),mn=std::min(mn,sa[i]);
else if(mx-mn>=k) return 1;
else mn=mx=sa[i];
return mx-mn>=k;
}
int Solve()
{
// for(int i=1; i<=n; ++i) printf("%d ",sa[i]);
int l=4,r=n,mid,res=-1;
while(l<r)
if(Check(mid=l+r>>1)) res=mid,l=mid+1;
else r=mid;
return res+1;
} int main()
{
while(n=read(),n)
{
for(int i=1; i<=n; ++i) A[i]=read();
--n;
for(int i=1; i<=n; ++i) A[i]=A[i+1]-A[i]+MAX;
Get_SA(), Get_ht();
printf("%d\n",Solve());
}
return 0;
}

SAM:

//29504K	594MS
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=4e4+5,MAX=88; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
struct Suffix_Automaton
{
int n,a[N],tot,las,fa[N],son[N][180],len[N],L[N],R[N],tm[N],A[N]; void Insert(int c)
{
int np=++tot,p=las; len[las=np]=len[p]+1;
for(; p&&!son[p][c]; p=fa[p]) son[p][c]=np;
if(!p) fa[np]=1;
else
{
int q=son[p][c];
if(len[q]==len[p]+1) fa[np]=q;
else
{
int nq=++tot; len[nq]=len[p]+1;
memcpy(son[nq],son[q],sizeof son[q]);
fa[nq]=fa[q], fa[q]=fa[np]=nq;
for(; son[p][c]==q; p=fa[p]) son[p][c]=nq;
}
}
}
void Build()
{
memset(tm,0,sizeof tm), memset(son,0,sizeof son);//!!! for(int i=1; i<=n; ++i) a[i]=read();
--n;
for(int i=1; i<=n; ++i) a[i]=a[i+1]-a[i]+MAX; tot=las=1, len[1]=0;
for(int i=1; i<=n; ++i) Insert(a[i]);
for(int i=1; i<=tot; ++i) ++tm[len[i]];
for(int i=1; i<=n; ++i) tm[i]+=tm[i-1];
for(int i=1; i<=tot; ++i) A[tm[len[i]]--]=i;
}
void Query()
{
memset(R,0,sizeof R), memset(L,0x3f,sizeof L);
for(int i=1,p=1; i<=n; ++i)
p=son[p][a[i]], L[p]=R[p]=i;//a[]与A[]。。。
for(int i=tot,x=A[i]; i; x=A[--i])
L[fa[x]]=std::min(L[fa[x]],L[x]), R[fa[x]]=std::max(R[fa[x]],R[x]);
int ans=0;
for(int i=1; i<=tot; ++i)
ans=std::max(ans,std::min(R[i]-L[i],len[i]));
printf("%d\n",ans<4?0:ans+1);
}
}sam; int main()
{
while(sam.n=read(),sam.n) sam.Build(), sam.Query();
return 0;
}

POJ.1743.Musical Theme(后缀数组 倍增 二分 / 后缀自动机)的更多相关文章

  1. POJ 1743 Musical Theme (字符串HASH+二分)

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15900   Accepted: 5494 De ...

  2. Poj 1743 Musical Theme (后缀数组+二分)

    题目链接: Poj  1743 Musical Theme 题目描述: 给出一串数字(数字区间在[1,88]),要在这串数字中找出一个主题,满足: 1:主题长度大于等于5. 2:主题在文本串中重复出现 ...

  3. POJ 1743 Musical Theme (后缀数组,求最长不重叠重复子串)(转)

    永恒的大牛,kuangbin,膜拜一下,Orz 链接:http://www.cnblogs.com/kuangbin/archive/2013/04/23/3039313.html Musical T ...

  4. poj 1743 Musical Theme(最长重复子串 后缀数组)

    poj 1743 Musical Theme(最长重复子串 后缀数组) 有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复 ...

  5. POJ 1743 Musical Theme 【后缀数组 最长不重叠子串】

    题目冲鸭:http://poj.org/problem?id=1743 Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Su ...

  6. Poj 1743 Musical Theme(后缀数组+二分答案)

    Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 28435 Accepted: 9604 Descri ...

  7. POJ 1743 Musical Theme(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=1743 [题目大意] 给出一首曲子的曲谱,上面的音符用不大于88的数字表示, 现在请你确定它主旋律的长度,主旋律指的是出现超过一次, ...

  8. POJ 1743 Musical Theme 二分+后缀数组

    Musical Theme   Description A musical melody is represented as a sequence of N (1<=N<=20000)no ...

  9. POJ 1743 Musical Theme 后缀数组 最长重复不相交子串

    Musical ThemeTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=1743 Description ...

随机推荐

  1. dataTable插件锁表头和锁列的教程

    源代码下载 我的同事让我帮忙给弄个锁头锁列的插件.结果找到大名鼎鼎的jquery dataTable插件. 今天我们来介绍不常用的功能:dataTable插件锁表头和锁前两列 由于是移动前端.我们不考 ...

  2. opencv入门指南(转载)

    转载链接:http://blog.csdn.net/morewindows/article/details/8426318 网上的总结的一些用openncv的库来做的事: 下面列出OpenCV入门指南 ...

  3. UML和模式应用5:细化阶段(9)---迈向对象设计

    1.前言 开发者如何设计对象,可以采用如下三种方式: 编码:在编码的同时进行设计 绘图然后编码:绘制一些UML,然后转到如上编码方式,在集成开发环境中编码 只绘图,不编码:使用工具从图中生成一切 本章 ...

  4. ARMV8 datasheet学习笔记4:AArch64系统级体系结构之存储模型

    1.前言 关于存储系统体系架构,可以概述如下: 存储系统体系结构的形式 VMSA 存储属性   2. 存储系统体系结构 2.1.    地址空间 指令地址空间溢出 指令地址计算((address_of ...

  5. GPIO接口解析【转】

    本文提供了一个linux下访问GPIO的约定的概述. 这些调用使用gpio_* 命名前缀.没有别的调用会使用这个前缀或是相关的__gpio_*前缀. 转自:http://blog.163.com/w5 ...

  6. linux系统下安装tomcat及配置

    一.下载TOMCAT压缩包 apache-tomcat-6.0.44-client.zip 或 apache-tomcat-7.0.69.tar.gz 点击进入官网:http://tomcat.apa ...

  7. Jenkins中配置selenium测试

    Jenkins中配置selenium测试 2015/03/23 第一步在jenkins中配置selenium服务器 第二步工程配置: 第三步:执行构建: 第四步,查看报告:

  8. hdu 4348 To the moon (主席树区间更新)

    传送门 题意: 一个长度为n的数组,4种操作 : (1)C l r d:区间[l,r]中的数都加1,同时当前的时间戳加1 . (2)Q l r:查询当前时间戳区间[l,r]中所有数的和 . (3)H ...

  9. typeof引发的思考

    今天在群里看到一位网友提问:var status=1; typeof status 结果输出什么 我会心一笑  ,这尼玛这么简单,一看就是‘number’,结果网友说不是number,而是string ...

  10. 解决Linux安装 VMware tools 工具的方法

    一:启动linux服务器,并用远程登录工具访问linux服务器 1:启动系统 2:用服务器控制台   :查看点ip地址 3:用客户端 连接服务器 二:挂起 vm虚拟机的 tools 安装光盘 三:开始 ...