//Kruskal算法按照边的权值从小到大查看一遍,如果不产生圈(重边等也算在内),就把当前这条表加入到生成树中。

//如果判断是否产生圈。假设现在要把连接顶点u和顶点v的边e加入生成树中。如果加入之前的u和v不在同一个连通分量里,那么加入e也不会产生圈。

//反之,如果u和v在同一个连通分量里,那一定会产生圈。可以用并查集高效判断是否属于同一个连通分量。

 #define _CRT_SECURE_NO_WARNINGS
/*
7 10
0 1 5
0 2 2
1 2 4
1 3 2
2 3 6
2 4 10
3 5 1
4 5 3
4 6 5
5 6 9
*/
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std; const int maxn = + ;
const int INF = ;
int par[maxn]; //父亲, 当par[x] = x时,x是所在的树的根
int Rank[maxn]; //树的高度
struct edge
{
int u, v, cost;
}; bool comp(const edge& e1, const edge& e2) {
return e1.cost < e2.cost;
} edge es[maxn];
int V, E; //顶点数和边数
//并查集实现-高效的判断是否属于同一个连通分量。
void init_union_find(int n);
int find(int x);
void unite(int x, int y);
bool same(int x, int y);
void init();
void input();
int kruskal(); //最小生成树算法 //初始化n个元素
void init_union_find(int n)
{
for (int i = ; i < n; i++) {
par[i] = i;
Rank[i] = ;
}
} //查询树的根
int find(int x) {
if (par[x] == x) {
return x;
}
else {
return par[x] = find(par[x]);
}
} //合并x和y所属集合
void unite(int x, int y) {
x = find(x);
y = find(y);
if (x == y) return; if (Rank[x] < Rank[y]) {
par[x] = y;
}
else {
par[y] = x;
if (Rank[x] == Rank[y]) Rank[x]++; //如果x,y的树高相同,就让x的树高+1
}
} //判断x和y是否属于同一个集合
bool same(int x, int y) {
return find(x) == find(y);
} void init() { } void input()
{
edge tmp;
for (int i = ; i < E; i++) {
cin >> tmp.u >> tmp.v >> tmp.cost;
es[i] = tmp;
}
} int kruskal()
{
sort(es, es + E, comp); //按照edge.cost的顺序从小到大排序
init_union_find(V); //将并查集初始化
int res = ;
for (int i = ; i < E; i++) {
edge e = es[i];
if (!same(e.u, e.v)) {
unite(e.u, e.v);
res += e.cost;
}
}
return res;
} int main()
{
cin >> V >> E;
input();
int res = kruskal();
cout << res << endl;
return ;
}

Kruskal算法:最小生成树的更多相关文章

  1. Kruskal算法-最小生成树

    2017-07-26  10:32:07 writer:pprp Kruskal算法是根据边的加权值以递增的方式,一次找出加权值最低的边来建最小生成树:并且每次添加的边不能造成生成树有回路,直到找到N ...

  2. POJ-2349(kruskal算法+最小生成树中最大边的长度)

    Arctic POJ-2349 这题是最小生成树的变形题目.题目的意思是已经有s个卫星频道,这几个卫星频道可以构成一部分的网络,而且不用费用,剩下的需要靠d的卫星接收器.题目要求的就是最小生成树中,最 ...

  3. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  4. 最小生成树的Kruskal算法实现

    最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...

  5. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  6. 贪心算法-最小生成树Kruskal算法和Prim算法

    Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...

  7. Prim算法和Kruskal算法(图论中的最小生成树算法)

    最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...

  8. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  9. 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind

    最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...

  10. 最小生成树Kruskal算法

    Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...

随机推荐

  1. Java正则解析HTML一例

    import java.util.regex.Matcher;import java.util.regex.Pattern; public class Test { static String tes ...

  2. 产品激活 比如Windows激活 , office激活 等激活的原理是什么? KMS等激活工具安全吗?

    什么是密钥管理服务 (KMS)? 密钥管理服务 (KMS) 允许在本地网络上激活产品.这样,单台计算机不必连接至 Microsoft 便可激活产品.需要将一台计算机配置为 KMS 主机.管理员必须为 ...

  3. oracle 18c centos7 设置开机自动启动Oracle

    学习自: http://blog.csdn.net/condywl/article/details/57129696 1. 在root用户下进行修改 配置文件 /etc/oratab vim /etc ...

  4. Jquery Jquery对象和DOM对象的微妙联系

    声明变量 var  $variable=             Jquery 对象: var  varibake=             DOM对象: var $cr= $("#id&q ...

  5. Bootstrap插件概述

    前面的话 Bootstrap除了包含丰富的Web组件之外,如下拉菜单.按钮组.导航.分页等,还包括一些JavaScript的插件.插件为 Bootstrap 的组件赋予了“生命”.Bootstrap的 ...

  6. Layui_HDFS目录(上传,下载,删除,分页,下级目录,键盘控制返回上一页)

    注:转载请署名 一.实体 package com.ebd.application.modules.fileManage.pojo; public class FilesOrDirs { private ...

  7. Git分支合并

    大致描述一下 上次为了解决bug新建了一个bugfix分支,并提交了c5(这个1,2,3,4,5具体的可能和图片对应不太一样,但是结构一样),下面就该把bugfix与master进行整合,整合之后就可 ...

  8. Leetcode 7.反转整数 By Python

    给定一个 32 位有符号整数,将整数中的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出: 21 注意: 假 ...

  9. 博主自传——蒟蒻的OI之路

    博主来自河北石家庄市第二中学,现在读高二,主攻信息学竞赛(其实并没有学习其他学科竞赛). NOIP中人品大爆发,使劲挤进河北省一等奖队伍,侥幸留在竞赛团队中(差点就淘汰出局啦). 关于我的ID,YOU ...

  10. 将文件转换为base64字符串,然后还原

    package com.um.banks.xinlian.utils; import java.io.File; import java.io.FileInputStream; import java ...