外星人

Time Limit: 3 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  

Input

   

Output

  输出test行,每行一个整数,表示答案。

Sample Input

  1
  2
  2 2
  3 1

Sample Output

  3
  

HINT

  Test<=50 Pi<=10^5,1<=Q1<=10^9

Main idea

  给定一个数,用Πp[i]^q[i](p<=10^5,q<=10^9)的形式表示,问最少需要对这个数字x进行几次x=Φ(x)操作使得x=1。

Solution

  这显然是一道数论题。
  首先想到了只有Φ(2)=1,所以最后答案必然需要转成带2的形式,我们先考虑一个数字,由欧拉函数的推导公式Φ(Πp[i]^q[i])=Π(p[i]-1)*p[i]^(q[i]-1)可以发现每次求Φ会消去一个质因数2,并且产生若干个2(产生的2是有上限的)。
  这句话是什么意思呢?
  我们举个例子:讨论一个偶数180=2^2 * 3^2 * 5,Φ(180)=2^1 * (3-1)*3 * (5-1)=48,这里产生了3个2,消去了1个2。
  所以我们只要求出产生了几个2即可(由于除了Φ(2)以外的数都是偶数,所以任意奇数只要经过一遍求Φ就可以变为偶数来处理,次数+1),因为每次只能消去一个1,所以答案就应该是这个数分解出的2的个数。
  知道欧拉函数是一个积性函数,并且我们现在求的显然是一个完全积性函数,由于这个性质,求分解出几个2可以使用线性筛来实现,对于每一项p[i]^q[i]分解出的个数就是(p[i]分解出的个数*q[i]),答案就是Σ(每一项分解出的个数)

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std; const int ONE=; int T;
int f[ONE],p[ONE],tot,phi[ONE];
int x,y,m,PD;
long long Ans; int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Get_f(int n)
{
phi[]=;
for(int i=;i<=n;i++)
{
if(!f[i])
{
p[++tot]=i;
phi[i]=phi[i-];
} for(int j=;j<=tot;j++)
{
if(i*p[j]>n) break;
f[i*p[j]]=;
phi[i*p[j]]=phi[i]+phi[p[j]];
if(i%p[j]==) break;
}
}
} int main()
{
Get_f(ONE-);
T=get();
while(T--)
{
m=get();
Ans=PD=;
for(int i=;i<=m;i++)
{
x=get(); y=get();
Ans+=(long long)phi[x]*y;
if(!PD && x==) PD=;
}
printf("%lld\n",Ans+(!PD));
}
}

【BZOJ2749】【HAOI2012】外星人[欧拉函数]的更多相关文章

  1. JZYZOJ1524 [haoi2012]外星人 欧拉函数

    http://172.20.6.3/Problem_Show.asp?id=1524 大概可以算一个结论吧,欧拉函数在迭代的时候,每次迭代之后消去一个2,每个非2的质因子迭代一次又(相当于)生成一个2 ...

  2. Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 568  Solved: 302[Submit][Status][ ...

  3. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  4. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  5. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  6. COGS2531. [HZOI 2016]函数的美 打表+欧拉函数

    题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...

  7. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  8. 51Nod-1136 欧拉函数

    51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...

  9. 欧拉函数 - HDU1286

    欧拉函数的作用: 有[1,2.....n]这样一个集合,f(n)=这个集合中与n互质的元素的个数.欧拉函数描述了一些列与这个f(n)有关的一些性质,如下: 1.令p为一个素数,n = p ^ k,则 ...

随机推荐

  1. html 背景

    用語設置背景的屬性 bgcolor設置背景顏色.可以使用名字.16進制和rgb三種形式的參數: <body bgcolor="#000000"> <body bg ...

  2. python之打印日志logging

    import logging # 简单打印日志举例 logging.basicConfig(level=logging.DEBUG) # 设置日志级别,WARN logging.warning('Wa ...

  3. 文件IO流完成文件的复制(复杂版本主要用来演示各种流的用途,不是最佳复制方案哦)

    package io; import java.io.BufferedReader;import java.io.BufferedWriter;import java.io.File;import j ...

  4. 退役前的记录(2018.10.14-NOIP2018)

    退役前的记录 诸位好,我是\(CJ\)最菜的\(Oier\),已经是\(G2\)的老年选手了,不知道什么时候就会退役了,总之\(G1\ double\)的机会已经没有了,去年因为联赛失利而止步,而今年 ...

  5. Layui_HDFS目录(上传,下载,删除,分页,下级目录,键盘控制返回上一页)

    注:转载请署名 一.实体 package com.ebd.application.modules.fileManage.pojo; public class FilesOrDirs { private ...

  6. Luogu4221 WC2018州区划分(状压dp+FWT)

    合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通.显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了. 考虑状压dp.设f[S]为S集合所有划分方 ...

  7. TCP的三次握手与四次挥手过程,各个状态名称与含义

    三次握手 第一次握手:主机A发送位码为syn=1,随机产生seq number=10001的数据包到服务器,主机B由SYN=1知道,A要求建立联机,此时状态为SYN_SENT: 第二次握手:主机B收到 ...

  8. 浅析python日志重复输出问题

    浅析python日志重复输出问题 问题起源: ​ 在学习了python的函数式编程后,又接触到了logging这样一个强大的日志模块.为了减少重复代码,应该不少同学和我一样便迫不及待的写了一个自己的日 ...

  9. lightoj1038(数学期望dp)

    题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...

  10. Codeforces Round #419 (Div. 2) B. Karen and Coffee

    To stay woke and attentive during classes, Karen needs some coffee! Karen, a coffee aficionado, want ...