BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ1143
题意概括
给出一个有向图。求最小链覆盖。
题解
首先说两个概念:
链:一条链是一些点的集合,链上任意两个点x, y,满足要么 x 能到达 y ,要么 y 能到达 x 。
反链:一条反链是一些点的集合,链上任意两个点x, y,满足 x 不能到达 y,且 y 也不能到达 x。
这题就是求最长反链长度。
有两个定理:
最长反链长度 = 最小链覆盖
最长链长度 = 最小反链覆盖
这题明显可以使用第一个。
那么只需要floyd跑一跑,然后二分图匹配就可以了。
代码比较短。
代码
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=100+5,N2=N*2;
int n,m,match[N2];
bool g[N][N],g2[N2][N2],vis[N2];
bool dfs(int x){
for (int i=1;i<=n;i++){
int y=i+n;
if (!vis[y]&&g2[x][y]){
vis[y]=1;
if (match[y]==-1||dfs(match[y])){
match[y]=x;
return 1;
}
}
}
return 0;
}
int main(){
memset(g,0,sizeof g);
memset(g2,0,sizeof g2);
scanf("%d%d",&n,&m);
for (int i=1,a,b;i<=m;i++){
scanf("%d%d",&a,&b);
g[a][b]=1;
}
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
g[i][j]=g[i][j]||(g[i][k]&&g[k][j]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if (g[i][j])
g2[i][j+n]=1;
int cnt=0;
memset(match,-1,sizeof match);
for (int i=1;i<=n;i++){
memset(vis,0,sizeof vis);
if (dfs(i))
cnt++;
}
printf("%d\n",n-cnt);
return 0;
}
BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖的更多相关文章
- [图论训练]1143: [CTSC2008]祭祀river 二分图匹配
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在 水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
- BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3236 Solved: 1651 [Submit] ...
- [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)
题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
- bzoj1143: [CTSC2008]祭祀river 最长反链
题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...
- bzoj1143: [CTSC2008]祭祀river && bzoj27182718: [Violet 4]毕业旅行
其实我至今不懂为啥强联通缩点判入度会错... 然后这个求的和之前那道组合数学一样,就是最长反链=最小链覆盖=最大独立集. #include<cstdio> #include<iost ...
- 2018.08.20 bzoj1143: [CTSC2008]祭祀river(最长反链)
传送门 一道简单的求最长反链. 反链简单来说就是一个点集,里面任选两个点u,v都保证从u出发到不了v且v出发到不了u. 链简单来说就是一个点集,里面任选两个点u,v都保证从u出发可以到达v或者v出发可 ...
- [BZOJ1143][CTSC2008]祭祀river(最长反链)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...
- BZOJ1143: [CTSC2008]祭祀river 网络流_Floyd_最大独立集
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
随机推荐
- 【BZOJ2749】【HAOI2012】外星人[欧拉函数]
外星人 Time Limit: 3 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Input Output 输出te ...
- python的__mro__与__slot__
class A(object): def __init__(self): print ' -> Enter A' print ' <- Leave A' class B(A): def _ ...
- 攻打医院服务器的SamSam勒索木马分析
攻打医院服务器的SamSam勒索木马分析 近日一款名为SamSam的勒索木马在国外爆发.该木马利用医院系统的服务器漏洞实施入侵,再进行加密勒索钱财.由于医院网络信息安全水平普遍薄弱,SamSam成功感 ...
- Principal components analysis(PCA):主元分析
在因子分析(Factor analysis)中,介绍了一种降维概率模型,用EM算法(EM算法原理详解)估计参数.在这里讨论另外一种降维方法:主元分析法(PCA),这种算法更加直接,只需要进行特征向量的 ...
- .Net Core中使用RabbitMQ
(1).引入依赖 RabbitMQ.Client (2).编写发布者代码 var connectionFactory = new ConnectionFactory() { HostName=&quo ...
- Python中【__all__】的用法
Python中[__all__]的用法 转:http://python-china.org/t/725 用 __all__ 暴露接口 Python 可以在模块级别暴露接口: __all__ = [&q ...
- 017_mac格式化硬盘,mac如何格式化硬盘
想做一个mac和windows都能识别的系统,推荐设置成什么格式 一.在mac下格式化 在Mac 下,打开右下角应用程序-实用工具-磁盘工具,里面选取你的移动硬盘,然后进行格式化,设置成EXFat格式 ...
- zabbix系列(一)centos7搭建zabbix3.0.4服务端及配置详解
1.安装常用的工具软件 yum install -y vim wget centos7关闭防火墙 systemctl stop firewalld.service systemctl disable ...
- OneNET麒麟座应用开发之九:与SD卡通讯并保存数据
由于需要记录的数据量比较大,而且有些时候,有的用户不方便实时上传数据,所以要求使用SD卡存储数据然后人工收取上传.为此我们选择了一种通用的SD卡读写器. 1.读卡器简介 该读卡器整合 SD 卡规范和 ...
- 利用HTML5开发Android
● Android设备多分辨率的问题 Android浏览器默认预览模式浏览 会缩小页面 WebView中则会以原始大小显示 Android浏览器和WebView默认为mdpi.hdpi相当于mdpi的 ...