Autonomous_Vehicle_Paper_Reading_List

2018-07-19 10:40:08

Referencehttps://github.com/ZRZheng/Autonomous_Vehicle_Paper_Reading_List

A collection of papers focus on self-driving car. Many topics are covered including system architecture,computer vison, sensor fusion,planning&control and SLAM. The paper list will be timely updated.

System architecture

  • Junior: The Stanford Entry in the Urban Challenge [pdf]
  • Towards Fully Autonomous Driving: Systems and Algorithms [pdf]
  • Autonomous Driving in Urban Environments: Boss and the Urban Challenge [pdf]
  • A Perception-Driven Autonomous Urban Vehicle [pdf]
  • Making Bertha Drive—An Autonomous Journey on a Historic Route [pdf]
  • Towards Full Automated Drive in Urban Environments:A Demonstration in GoMentum Station, California [pdf]

Computer vision

  • Computer Vision for Autonomous Vehicles:Problems, Datasets and State-of-the-Art [pdf]
  • Video Scene Parsing with Predictive Feature Learning[pdf]
  • Unsupervised Monocular Depth Estimation with Left-Right Consistency [pdf]
  • Learning a Driving Simulator [pdf]
  • Deep Tracking:Seeing Beyond Seeing Using Recurrent Neural Networks [pdf]
  • End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks [pdf]
  • Deep Tracking on the Move: Learning to Track the World from a Moving Vehicle using Recurrent Neural Networks [pdf]
  • Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image    [pdf]
  • 3D Object Proposals using Stereo Imagery for Accurate Object Class Detection [pdf]
  • On the Sample Complexity of End-to-end Training vs. Semantic Abstraction Training [pdf]
  • End to End Learning for Self-Driving Cars [pdf]
  • Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car [pdf]
  • DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving [pdf]
  • End-to-end Learning of Driving Models from Large-scale Video Datasets [pdf]
  • Fully Convolutional Networks for Semantic Segmentation [pdf]
  • SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[pdf]
  • Feature Pyramid Networks for Object Detection[pdf]
  • Mask R-CNN [pdf]
  • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[pdf]
  • Fast R-CNN [pdf]
  • You Only Look Once:Unified, Real-Time Object Detection [pdf]
  • YOLO9000: Better,Faster, Stronger  [pdf]
  • SSD: Single Shot MultiBox Detector [pdf]
  • R-FCN: Object Detection via Region-based Fully Convolutional Networks [pdf]
  • Predicting Deeper into the Future of Semantic Segmentation [pdf]
  • Geometry-Based Next Frame Prediction from Monocular Video [pdf]
  • Long-term Recurrent Convolutional Networks for Visual Recognition and Description [pdf]
  • MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving [pdf]
  • Beyond Skip Connections: Top-Down Modulation for Object Detection [pdf]
  • Traffic Sign Recognition with Multi-Scale Convolutional Networks [pdf]
  • Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs? [pdf]
  • Pyramid Scene Parsing Network  [pdf]
  • Brain Inspired Cognitive Model with Attention for Self-Driving Cars [pdf]
  • Image-to-Image Translation with Conditional Adversarial Networks [pdf]
  • Unsupervised Image-to-Image Translation Networks [pdf]
  • A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection[pdf]
  • Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers [pdf]
  • Multi-Class Multi-Object Tracking using Changing Point Detection[pdf]
  • Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection[pdf]
  • Overview of Environment Perception for Intelligent Vehicles[pdf]
  • An Empirical Evaluation of Deep Learning on Highway Driving [pdf]
  • Histograms of Oriented Gradients for Human Detection [pdf]

Sensor fusion

  • LIDAR-based Driving Path Generation Using Fully Convolutional Neural Networks [pdf]
  • A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars [pdf]
  • Brain4Cars: Car That Knows Before You Do via Sensory-Fusion Deep Learning Architecture [pdf]
  • Multi-View 3D Object Detection Network for Autonomous Driving [pdf]
  • VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem [pdf]
  • Vehicle Detection from 3D Lidar Using Fully Convolutional Network[pdf]
  • Detecting Drivable Area for Self-driving Cars:An Unsupervised Approach [pdf]

Motion planning & Reinforcement learning

  • A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles[pdf]
  • A Review of Motion Planning Techniques for Automated Vehicles [pdf]
  • Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions [pdf]
  • A survey on motion prediction and risk assessment for intelligent vehicles [pdf]
  • End-to-End Deep Reinforcement Learning for Lane Keeping Assist [pdf]
  • Deep Reinforcement Learning framework for Autonomous Driving [pdf]
  • Continuous control with deep reinforcement learning [pdf]
  • Learning to Drive using Inverse Reinforcement Learning and Deep Q-Networks [pdf]
  • Long-term Planning by Short-term Prediction [pdf]
  • Safe,Multi-Agent, Reinforcement Learning for Autonomous Driving [pdf]
  • Large-scale cost function learning for path planning using deep inverse reinforcement learning [pdf]
  • Human-like Planning of Swerve Maneuvers for Autonomous Vehicles [pdf]
  • Virtual to Real Reinforcement Learning for Autonomous Driving [pdf]
  • Learning End-to-end Multimodal Sensor Policies for Autonomous Navigation [pdf]
  • A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning [pdf]
  • Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning [pdf]
  • Characterizing Driving Styles with Deep Learning [pdf]
  • Learning Where to Attend Like a Human Driver [pdf]
  • Probabilistic Vehicle Trajectory Prediction over Occupancy Grid Map via Recurrent Neural Network [pdf]

SLAM

  • Past, Present, and Future of Simultaneous ocalization and Mapping: Toward theRobust-PerceptionAge [pdf]
  • Learning from Maps: Visual Common Sense for Autonomous Driving [pdf]
  • A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles [pdf]
  • Image-based localization using LSTMs for structured feature correlation [pdf]
  • PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[pdf]

(转)Autonomous_Vehicle_Paper_Reading_List的更多相关文章

随机推荐

  1. Python并发编程之线程池/进程池--concurrent.futures模块

    一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/ ...

  2. 参与.net开源项目开发

    EntityFramework6 https://github.com/aspnet/EntityFramework6 https://github.com/aspnet/EntityFramewor ...

  3. python seek()方法报错:“io.UnsupportedOperation: can't do nonzero cur-relative seeks”

    今天使用seek()时报错了, 看下图 然后就百度了一下,找到了解决方法 这篇博客https://www.cnblogs.com/xisheng/p/7636736.html 帮忙解决了问题, 照理说 ...

  4. <转>jmeter(八)断言

    本博客转载自:http://www.cnblogs.com/imyalost/category/846346.html 个人感觉不错,对jmeter讲解非常详细,担心以后找不到了,所以转发出来,留着慢 ...

  5. Oracle初级第一天

    oracle卸载 运行regedit,删除HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ ...

  6. javaweb笔记06—(页面跳转及编码格式)

    1.指令:<%@     %>:一个页面可以有多个import, 但是标识本页面为jsp页面的指令只能是一条(建议是一条 ) 2.出错页面:<%@ isError(true)%> ...

  7. MySQL实现排名并查询指定用户排名功能

    表结构: CREATE TABLE test.testsort ( id ) NOT NULL AUTO_INCREMENT, uid ) COMMENT '用户id', score , ) DEFA ...

  8. direct加载之ora-39782一例

    近日,我们有个环境在数据加载到oracle的时候出现ora-39782异常,版本是11.2.经google,几乎没有什么先例,因为我们是使用oci直接写的,可见现在还使用oci接口并不多,也或者我们的 ...

  9. tomcat报java.lang.VerifyError错误

    google结果: 针对“java.lang.VerifyError”的错误原因,主要是因为jar包的版本问题导致,可能是因为部署环境存在2套以上版本冲突的JDBC驱动程序部署在应用服务器不同的lib ...

  10. intel FPGA使用

    https://www.altera.com/documentation/swn1503506366945.html https://files.cnblogs.com/files/shaohef/o ...