POJ 1390 Blocks(记忆化搜索+dp)
时限:5000 MS | 内存限制:65536K | |
提交材料共计: 6204 | 接受: 2563 |
描述
相应的图片如下:

图1
如果一些相邻的盒子都是相同的颜色,并且它左边的盒子(如果它存在)和它的右边的盒子(如果它存在)都是其他颜色的,我们称它为“盒子段”。有四个盒子段。那就是:金,银,铜,金。片段中分别有1,4,3,1方框。
每次您可以单击一个框,然后包含该框的整个段消失。如果这段是由k个方框组成的,你会得到k*k点。例如,如果你点击一个银盒子,银段消失了,你得到4*4=16点。
现在让我们看看下面的图片:
图2
第一个是最优的。
在这个游戏的初始状态下,找出你能得到的最高分数。
输入
输出量
样本输入
2
9
1 2 2 2 2 3 3 3 1
1
1
样本输出
Case 1: 29
Case 2: 1
解题思路:
将连续的若干个方块作为一个“大块”(box_segment) 考虑,假设开始一共有 n个“大块”,编号0到n-1 第i个大块的颜色是 color[i],包含的方块数目,即长度,是len[i]
用click_box(i,j)表示从大块i到大块j这一段消除后所能 得到的最高分,则整个问题就是: click_box(0,n-1)。
要求click_box(i,j)时,考虑最右边的大块j,对它有两种处理方式,要取其优者:
1) 直接消除它,此时能得到最高分就是: click_box(i,j-1) + len[j]*len[j]
2) 期待以后它能和左边的某个同色大块合并,考虑和左边的某个同色大块合并:
左边的同色大块可能有很多个,到底和哪个合并最 好,不知道,只能枚举。假设大块j和左边的大块 k(i<=k<j-1) 合并,此时能得到的最高分是多少呢?
是不是: click_box(i,k-1) + click_box(k+1,j-1) + (len[k]+len[j])
不对! 因为将大块k和大块j合并后,形成的新大块会在最右边。但直接将其消去,未必是最好的,也许它还应该和左边的同色大块合并,才更好
那么上面的dp不可用,需要改变问题的形式
__________________________________________________________________
click_box(i,j,ex_len) 表示: 大块 j 的右边已经有一个长度为ex_len的大块(该大块可能是在合并过程中形成的),且 j 的颜色和ex_len相同,在此情况下所能得到的最高分 。
于是整个问题就是求:click_box(0,n-1,0)
求click_box(i,j,ex_len)时,有两种处理方法取最优者,假设j和ex_len合并后的大块称作 Q
1) 将Q直接消除,这种做法能得到的最高分就是: click_box(i,j-1,0) + (len[j]+ex_len)2
2) 期待Q以后能和左边的某个同色大块合并。需要枚举可能和Q 合并的大块。假设让大块k和Q合并,则此时能得到的最大分数是:
click_box(i,k,len[j]+ex_len) + click_box(k+1,j-1,0)
click_box(i,j,ex_len) 递归的终止条件: i == j
代码:
#include<iostream>
#include<cstring>
using namespace std;
#define N 200 + 5
int dp[N][N][N];
struct segMent {
int len;
int color;
};
segMent segNum[N];
int clickBox(int i, int j, int len) {
if(dp[i][j][len] != -) return dp[i][j][len];
int result = (segNum[j].len + len)*(segNum[j].len + len);
if(i == j) return result;
result += clickBox(i, j-, );
for(int k = i; k < j; k++) {
if(segNum[k].color != segNum[j].color) continue;
int r = clickBox(k+, j-, ) + clickBox(i, k, segNum[j].len + len);
result = max(result, r);
}
dp[i][j][len] = result;
return result;
}
int main() {
int T;
cin >> T;
for(int t = ; t <= T; t++) {
int n;
cin >> n;
int last = -;
int count = -;
memset(dp, -, sizeof(dp));
for(int i = ; i < n; i++) {
int v;
cin >> v;
if(v != last) {
count++;
segNum[count].len = ;
segNum[count].color = v;
last = v;
} else segNum[count].len++;
}
cout << "Case " << t << ": " << clickBox(, count, ) << endl;
}
return ;
}
POJ 1390 Blocks(记忆化搜索+dp)的更多相关文章
- poj 1390 Blocks (记忆化搜索)
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4318 Accepted: 1745 Descriptio ...
- POJ 1088 滑雪(记忆化搜索+dp)
POJ 1088 滑雪 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 107319 Accepted: 40893 De ...
- 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence
题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...
- HDU 1078 FatMouse and Cheese 记忆化搜索DP
直接爆搜肯定超时,除非你加了某种凡人不能想出来的剪枝...555 因为老鼠的路径上的点满足是递增的,所以满足一定的拓补关系,可以利用动态规划求解 但是复杂的拓补关系无法简单的用循环实现,所以直接采取记 ...
- 记忆化搜索 dp学习~2
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331 Function Run Fun Time Limit: 2000/1000 MS (Java/ ...
- 【10.31校内测试】【组合数学】【记忆化搜索/DP】【多起点多终点二进制拆位Spfa】
Solution 注意取模!!! Code #include<bits/stdc++.h> #define mod 1000000007 #define LL long long usin ...
- hdu1331&&hdu1579记忆化搜索(DP+DFS)
这两题是一模一样的``` 题意:给了一系列递推关系,但是由于这些递推很复杂,所以递推起来要花费很长的时间,所以我要编程序在有限的时间内输出答案. w(a, b, c): 如果a,b,c中有一个值小于等 ...
- HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
- hdu 4960 记忆化搜索 DP
Another OCD Patient Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Ot ...
随机推荐
- 浅谈Nginx负载均衡与F5的区别
前言 笔者最近在负责某集团网站时,同时用到了Nginx与F5,如图所示,负载均衡器F5作为处理外界请求的第一道“墙”,将请求分发到web服务器后,web服务器上的Nginx再进行处理,静态内容直接访问 ...
- Spark多种运行模式
1.测试或实验性质的本地运行模式(单机) 该模式被称为Local[N]模式,是用单机的多个线程来模拟Spark分布式计算,通常用来验证开发出来的应用程序逻辑上是否有问题. 其中N代表可以使用N个线程, ...
- Getting started with Processing 第十一章——数组
Getting started with Processing 第十一章——数组 从变量到数组: 使用数组,无需为每一个变量创建一个新的名称/这让代码变得更短,更容易理解,更方便更新. 创建数组的三个 ...
- XGBoost介绍
- 关于Handler中Message的创建问题
Message用来定义一个包含任意数据的消息对象,这个消息对象是可以被发送给Handler处理的. 我们最好通过Message.obtain()和Handler.obtatinMessage()来得到 ...
- redis,memcache二者的区别是?(优缺点)
Memcache和Redis区别: Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcache相比一个最大的区别. Redis在很多方面具备数据库的特征,或者说就是一个数据库系统,而M ...
- 4.2 面向对象分析(二) CRC方法标识概念类
CRC 又称为CRC索引卡片:CRC card 每张卡片代表一个类 Each card represents one class 每张卡片上写出这个类承担的职责.与其合作交互的其他类名 ...
- 05 爬虫之scrapy
一 scrapy框架简介 01 什么是scrapy: Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能(高性能异步下载,队 ...
- 如何设置Git SSH密钥
1. SSH 存储在user/用户名/.ssh文件夹下 生成SSH密钥 $ ssh-keygen -t rsa -C "your_email" 2. 查看生成的公钥 $ cat ~ ...
- 3月26 document的练习
1.Window.document对象 一.找到元素: docunment.getElementById("id"):根据id找,最多找一个: var a =docunme ...