poj-2142-exgcd/解的和最小
Description Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspirin using 300mg weights and 700mg weights, she can put one 700mg weight on the side of the medicine and three 300mg weights on the opposite side (Figure 1). Although she could put four 300mg weights on the medicine side and two 700mg weights on the other (Figure 2), she would not choose this solution because it is less convenient to use more weights.
You are asked to help her by calculating how many weights are required. Input The input is a sequence of datasets. A dataset is a line containing three positive integers a, b, and d separated by a space. The following relations hold: a != b, a <= 10000, b <= 10000, and d <= 50000. You may assume that it is possible to measure d mg using a combination of a mg and b mg weights. In other words, you need not consider "no solution" cases.
The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset. Output The output should be composed of lines, each corresponding to an input dataset (a, b, d). An output line should contain two nonnegative integers x and y separated by a space. They should satisfy the following three conditions.
No extra characters (e.g. extra spaces) should appear in the output. Sample Input 700 300 200 Sample Output 1 3 Source |
给出两种砝码质量为a,b,问能不能测出质量c的东西,求最小的砝码数量,如果有多个方案考虑总质量最小的方案。
a*x+b*y=c ,求满足方程的 abs(x)+abs(y)的最小值。做两次exgcd取一个最优的。一次让x为最小正整数,一次让y为最小正整数。
(但我总觉得应该让求出来的解在减去一个d'/d看会不会更优,这里没进行这一步但是A了。
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){d=a;x=;y=;}
else{exgcd(b,a%b,d,y,x);y-=(a/b)*x;}
}
int main(){
LL a,b,c,d,x1,x2,y1,y2;
while(cin>>a>>b>>c&&(a||b||c)){
exgcd(a,b,d,x1,y1);
exgcd(b,a,d,x2,y2);
if(c%d){
puts("no solution");
}
else{
LL d1=b/d,d2=a/d;
x1=x1*c/d,y1=y1*c/d;
x2=x2*c/d,y2=y2*c/d;
x1=(x1%d1+d1)%d1,y1=(c-a*x1)/b;
x2=(x2%d2+d2)%d2,y2=(c-b*x2)/a;
x1=fabs(x1),y1=fabs(y1);
x2=fabs(x2),y2=fabs(y2);
if(x1+y1<x2+y2) cout<<x1<<' '<<y1<<endl;
else if(x1+y1>x2+y2) cout<<y2<<' '<<x2<<endl;
else{
if(x1*a+y1*b<x2*a+y2*b) cout<<x1<<' '<<y1<<endl;
else cout<<y2<<' '<<x2<<endl;
}
}
}
return ;
}
poj-2142-exgcd/解的和最小的更多相关文章
- POJ.2142 The Balance (拓展欧几里得)
POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...
- POJ 2142 The Balance【扩展欧几里德】
题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小. 用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当 ...
- poj 2195 二分图带权匹配+最小费用最大流
题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...
- POJ 2142 - The Balance [ 扩展欧几里得 ]
题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...
- exgcd 解同余方程ax=b(%n)
ax=n(%b) -> ax+by=n 方程有解当且仅当 gcd(a,b) | n ( n是gcd(a,b)的倍数 ) exgcd解得 a*x0+b*y0=gcd(a,b) 记k=n/gc ...
- POJ 2142 The Balance (解不定方程,找最小值)
这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a& ...
- POJ 2142 The Balance(exgcd)
嗯... 题目链接:http://poj.org/problem?id=2142 AC代码: #include<cstdio> #include<iostream> using ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- POJ 2891 Strange Way to Express Integers | exGcd解同余方程组
题面就是让你解同余方程组(模数不互质) 题解: 先考虑一下两个方程 x=r1 mod(m1) x=r2 mod (m2) 去掉mod x=r1+m1y1 ......1 x=r2+m2y2 . ...
- POJ 2142 The balance | EXGCD
题目: 求ax+by=c的一组解,使得abs(x)+abs(y)尽量小,满足前面前提下abs(ax)+abs(by)尽量小 题解: exgcd之后,分别求出让x尽量小和y尽量小的解,取min即可 #i ...
随机推荐
- WebPack填坑笔记
loader使用时不需要用require引入,在使用plugins(插件)才需要使用require引入 压缩js代码会导致热更新失效 所以开发环境先不要进行压缩 给css加前缀的 postcss-lo ...
- $mount方法是用来挂载我们的Vue.extend扩展的
html <body> <div id="app"> <diy></diy> </div> </body> ...
- Druid介绍2
Druid的发送数据和查询数据 Druid 开篇 - 大数据实时探索性分析平台 官网 Druid 一次海量数据实时处理的实践 使用HDFS作为Druid的deepStorage 在哪里下载druid ...
- Codeforces-Anastasia and pebbles
这是一道很有意思的(水)题. 地址戳:http://codeforces.com/problemset/problem/789/A 题目的大意呢,就是一个可爱的大姐姐的故事.说是啊,她每天都带着两个一 ...
- java.util.concurrent.ExecutionException: org.apache.catalina.LifecycleException: Failed to start component [StandardEngine[Catalina]
本文为博主原创,未经允许不得转载: 被坑了好长时间的bug,差点就要重新配置环境,重新下载,重新开始的境遇.在此记录一下: 首先展示一下报错的异常: -Apr- ::] org.apache.cata ...
- spring applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...
- Xilinx_ISE 14.7 Win10 闪退
打开D:\Xilinx\14.7\ISE_DS\ISE\lib\nt64 将libPortabilityNOSH.dll 重命名为libPortability.dll,替换原libPortabilit ...
- ARM伪指令
1.伪指令是什么 ARM伪指令不是ARM指令集中的指令,只是为了编程方便人们定义了伪指令. 在汇编时这些指令将会被等效的ARM指令或arm指令的组合代替. 编程时可以像其他ARM指令一样使用伪指令,区 ...
- UVA1025 城市里的间谍
#include<iostream> #include<cstdio> #include<memory.h> using namespace std; #defin ...
- POJ 3415 Common Substrings(长度不小于K的公共子串的个数+后缀数组+height数组分组思想+单调栈)
http://poj.org/problem?id=3415 题意:求长度不小于K的公共子串的个数. 思路:好题!!!拉丁字母让我Wa了好久!!单调栈又让我理解了好久!!太弱啊!! 最简单的就是暴力枚 ...