题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704

Problem Description
 
Sample Input
2
Sample Output
2

Hint

1. For N = 2, S(1) = S(2) = 1.

2. The input file consists of multiple test cases.
 
题意是输入一个N,求N被分成1个数的结果+被分成2个数的结果+...+被分成N个数的结果,N很大
 
1.隔板原理
1~N有N个元素,每个元素代表一个1.分成K个数,即在(N-1)个空挡里放置(K-1)块隔板
即求组合数C(N-1,0)+C(N-1,1)+...+C(N-1,N-1)
 
2.组合数求和公式
C(n,0)+C(n,1)+C(n,2)+.+C(n,n)=2^n
证明如下:
利用二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2 +.+C(n,n)b^n
令a=b=1左边就是2^n
所以题目即求2^(n-1)%(1e9+7)
设MOD为1e9+7
 
3.费马小定理(降幂)
因为N很大,所以需要费马小定理来降幂
费马小定理是假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。
所以可以把(n-1)对(MOD-1)取余 设余数为K 因为2^(MOD-1)%MOD =1
题目即求2^K %MOD
 
4.快速幂求解
现在K<=MOD,快速幂的复杂度是O(log₂N),直接套模板就行
 
 #include<cstdio>
#include<iostream>
#include<cstring>
#include<string.h>
using namespace std; #define MOD 1000000007 long long quick_mod(long long a,long long b,long long m)//快速幂,复杂度log2n
{
long long ans=;
while(b)
{
if(b&)
{
ans=(ans*a)%m;
b--;
}
b/=;
a=a*a%m;
}
return ans;
} int main()
{ char str[];
long long sum;
int len,i;
long long M=MOD-;
while(scanf("%s",str)!=EOF)
{
len=strlen(str);
sum=;
for(i=;i<len;i++)
{
sum=sum*+(str[i]-'');
sum=sum%M;//费马小定理
}
printf("%lld\n",quick_mod(,(sum-),MOD));//快速幂
}
return ;
}
 
 
 
 

HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)的更多相关文章

  1. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  2. HDU 4704 Sum( 费马小定理 + 快速幂 )

    链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...

  3. hdu 4704(费马小定理+快速幂取模)

    Sum                                                                                Time Limit: 2000/ ...

  4. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  5. UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)

    题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...

  6. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  7. HDU 4704 Sum (隔板原理 + 费马小定理)

    Sum Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/131072K (Java/Other) Total Submiss ...

  8. 【Gym 100947E】Qwerty78 Trip(组合数取模/费马小定理)

    从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模.可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为 C((m−1)+(n−1),n−1) 再考虑其 ...

  9. Educational Codeforces Round 13 D. Iterated Linear Function 逆元+公式+费马小定理

    D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input s ...

随机推荐

  1. react中使用antd Table组件滚动加载数据的实现

    废话不多说,直接上代码.一目了然. import React, { Component } from "react"; import { Table } from "an ...

  2. 基于jquery实现页面loading加载效果

    实现loading 加载提示 ······ 透明遮罩 居中效果 具体代码如下: CSS样式部分: <style type="text/css"> .background ...

  3. oracle错误整理

    1. ORA-31640: unable to open dump file 解决:原来11g R2的IMPDP 增加了一个参数设置:CLUSTER,在设置了parallel参数>1的情况下, ...

  4. 17. Letter Combinations of a Phone Number C++回溯法

    简单的回溯法! class Solution { public: void backTrack(string digits, vector<string> words, string an ...

  5. android project

  6. asm ftp utilty and usage

    Oracle 11g ASM supports ASM FTP, by which operations on ASM files and directories can be performed s ...

  7. get url img

    selenium     1● 了解selenium 这个是做 web页面测试,模拟用户测试   =====> pip install selenium 安装     2● django 用于接 ...

  8. Java集合list,map,set区别及遍历

    1.1 List.Set.Map基本区别 1.List,Set都是继承Collection接口,Map不是. 2.List:LinkedList.ArrayList.Vector Set :HashS ...

  9. 基于bootstrap的后台左侧导航菜单和点击二级菜单刷新二级页面时候菜单展开显示当前菜单

    本文使用的框架版本为: bootstrap3,Jquery2.1.0  (其他jquery可能会报错,菜单项不执行 效果如下: 1.在项目中引入框架: <link rel="style ...

  10. 【转】java提高篇(二)-----理解java的三大特性之继承

    [转]java提高篇(二)-----理解java的三大特性之继承 原文地址:http://www.cnblogs.com/chenssy/p/3354884.html 在<Think in ja ...