【BZOJ4637】期望

Description

在米国有一所大学,名叫万国歌剧与信息大学(UniversalOperaandInformaticasUniversity)。简称UOI大学。UOI大学的建筑与道路分布很有趣,每对建筑之间有且仅有一条直接或者间接的路径相连,更加明确的说,就是成树形分布。其实在设计时,对于大学的N个建筑,总共有M条道路可以修建,每条道路都有一个距离值Disti和一个美学值Valuei。一个设计方案的距离值和美学值定义为该设计方案内包含的道路的距离值与美学值之和。投资方的要求只有设计方案的距离值最小。大神出于对树的喜爱所以决定设计方案必须是一棵树。因为要参加UOI,所以当时大神就急急忙忙地随机选择了一个合法的方案。但其实存在很多合法的方案,假设每种设计方案取的概率是均等的,那么设计方案的美学值期望是多少?

Input

第一行两个整数,N和M,意义如上所述。
第二行到第M+1行,每行4个整数,Xi,Yi,Disti,Valuei,分别表示这条道路连接的两个建筑的编号,距离值以及美学值。
输入保证至少有一种合法方案。
100%的数据保证N<=10000M<=200000
100%的数据保证距离值相同的道路数小于30,同时不保证没有重边。

Output

一行一个整数,即满足总道路长度最小的情况下,设计方案的美学值期望。要求保留5位小数

Sample Input

2 1
1 2 3 4

Sample Output

4.00000

题解:傻题细节多啊~

我们先进行Kruskal求距离值的最小生成树,如果有多条边权值相同,则我们将它们放到一起处理。我们再把加入后会被分到同一个连通块中的边放到一起,并把连通块离散化缩成点。因为期望是可加的,所以我们可以枚举其中的每条边,这条边出现的概率就是总的缩点后的图的生成树数目 分之 保证这条边在内时剩余图的生成树数目。拿矩阵树定理算一下就好了,用long double即可过。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
const int maxn=10010;
const int maxm=200010;
typedef long double db;
const db eps=1e-6;
struct edge
{
int a,b,c,d;
}p[maxm];
int n,m,tot,tp,now;
int f[maxn],bel[maxn],g[65],vis[maxn],st[40],pa[40],pb[40],qa[40],qb[40],ref[65];
int qs[65][40],qt[65],ps[65][40],pt[65];
db v[40][40],ans;
bool cmp(const edge &a,const edge &b)
{
return a.c<b.c;
}
inline int find(int x)
{
return (f[x]==x)?x:(f[x]=find(f[x]));
}
inline int gind(int x)
{
return (g[x]==x)?x:(g[x]=gind(g[x]));
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
inline double gauss(int N)
{
db ret=1;
int i,j,k;
for(i=1;i<N;i++)
{
for(j=k=i;j<N;j++) if(fabs(v[j][i])>fabs(v[k][i])) k=j;
if(k!=i) for(ret=-ret,j=1;j<N;j++) swap(v[i][j],v[k][j]);
if(fabs(v[i][i])<1e-6) return 0;
for(j=1;j<N;j++) if(j!=i&&fabs(v[j][i])>1e-6)
{
db tmp=v[j][i]/v[i][i];
for(k=1;k<N;k++) v[j][k]-=v[i][k]*tmp;
}
ret=ret*v[i][i];
}
return ret;
}
inline void calc(int x)
{
int i,j,a,b;
for(i=1;i<=pt[x];i++) ref[ps[x][i]]=i;
for(i=1;i<=qt[x];i++) qa[i]=ref[pa[qs[x][i]]],qb[i]=ref[pb[qs[x][i]]];
memset(v,0,sizeof(v));
for(i=1;i<=qt[x];i++) a=qa[i],b=qb[i],v[a][a]++,v[b][b]++,v[a][b]--,v[b][a]--;
double tmp=gauss(pt[x]);
for(i=1;i<=qt[x];i++)
{
memset(v,0,sizeof(v));
if(qa[i]>qb[i]) swap(qa[i],qb[i]);
for(j=1;j<=qt[x];j++) if(i!=j)
{
a=qa[j],b=qb[j];
if(a==qb[i]) a=qa[i];
if(a>qb[i]) a--;
if(b==qb[i]) b=qa[i];
if(b>qb[i]) b--;
v[a][a]++,v[b][b]++,v[a][b]--,v[b][a]--;
}
ans+=gauss(pt[x]-1)*p[st[qs[x][i]]].d/tmp;
}
qt[x]=pt[x]=0;
}
inline void solve()
{
int i,a,b;
now++,tot=0;
for(i=1;i<=tp;i++)
{
if(vis[find(p[st[i]].a)]!=now) vis[f[p[st[i]].a]]=now,bel[f[p[st[i]].a]]=++tot;
if(vis[find(p[st[i]].b)]!=now) vis[f[p[st[i]].b]]=now,bel[f[p[st[i]].b]]=++tot;
pa[i]=bel[f[p[st[i]].a]],pb[i]=bel[f[p[st[i]].b]];
}
for(i=1;i<=tot;i++) g[i]=i;
for(i=1;i<=tp;i++)
{
a=gind(pa[i]),b=gind(pb[i]);
if(a!=b) g[a]=b;
}
for(i=1;i<=tp;i++) a=gind(pa[i]),qs[a][++qt[a]]=i;
for(i=1;i<=tot;i++) a=gind(i),ps[a][++pt[a]]=i;
for(i=1;i<=tot;i++) if(gind(i)==i) calc(i);
for(i=1;i<=tp;i++)
{
a=find(p[st[i]].a),b=find(p[st[i]].b);
if(a!=b) f[a]=b;
}
tp=0;
}
int main()
{
//freopen("bz4637.in","r",stdin);
n=rd(),m=rd();
int i,a,b,pre=0;
for(i=1;i<=m;i++) p[i].a=rd(),p[i].b=rd(),p[i].c=rd(),p[i].d=rd();
sort(p+1,p+m+1,cmp);
for(i=1;i<=n;i++) f[i]=i;
for(i=1;i<=m;i++)
{
if(p[i].c>pre&&pre) solve();
a=find(p[i].a),b=find(p[i].b);
if(a==b) continue;
st[++tp]=i,pre=p[i].c;
}
solve();
printf("%.5Lf",ans);
return 0;
}//3 3 1 2 1 4 1 3 1 6 2 3 1 8

【BZOJ4637】期望 Kruskal+矩阵树定理的更多相关文章

  1. bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...

  2. 矩阵树定理&BEST定理学习笔记

    终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\ ...

  3. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  4. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  5. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  6. 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

    [LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...

  7. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  8. [CF917D]Stranger Trees[矩阵树定理+解线性方程组]

    题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...

  9. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理

    题目描述 给出 $n$ 个点和 $n-1$ 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 $10^9+7$ 取模. 输入 第一行包含一个正整数 N(N<=17) ...

随机推荐

  1. Python之道(一)之安装Python

    "Python之道"首先介绍一下在windows系统下怎样安装Python开发环境. (1)下载MSI安装文件 进入网址www.python.org,点击Downloads进入下载 ...

  2. C#后台执行js

    StringBuilder sb = new StringBuilder(); sb.Append("<script type='text/javascript'>") ...

  3. 【LeetCode】242. Valid Anagram (2 solutions)

    Valid Anagram Given two strings s and t, write a function to determine if t is an anagram of s. For ...

  4. SNF快速开发平台MVC-EasyQuery-拖拽生成SQL脚本

    在之前介绍一下EasyQuery工具SNF开发平台WinForm-EasyQuery统计分析-效果-非常牛逼的报表查询工具 Winform开发框架之图表报表在线设计器-报表-SNF.EasyQuery ...

  5. [svc]rsync简单部署

    安装rsync服务端-backup服务器 yum install rsync -y useradd rsync -s /sbin/nologin -M chown -R rsync.rsync /da ...

  6. select 语法

    select 语句主要语法: SELECT select_list [ INTO new_table ] FROM table_source [ WHERE search_condition ] [ ...

  7. linux每日命令(28):chgrp命令

    在linux系统里,文件或目录的权限的掌控以拥有者及所属群组来管理.可以使用chgrp指令取变更文件与目录所属群组,这种方式采用群组名称或群组识别码都可以.Chgrp命令就是change group的 ...

  8. 一篇文全面了解DevOps:从概念、关键问题、兴起到实现需求

    一篇文全面了解DevOps:从概念.关键问题.兴起到实现需求 转自:一篇文全面了解DevOps:从概念.关键问题.兴起到实现需求 2018-06-06 目前在国外,互联网巨头如Google.Faceb ...

  9. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  10. 【Unity笔记】打包安卓APK时Build Setting中的三种Build System

    Internal(Default):Unity内置,仅需Android SDK支持.不能导出工程,适用于仅适用Unity开发的工程. Gradle(New):使用Gradle进行构建,需要Androi ...