大家都用过ReentrantLock,但是大家对内部实现是否足够了解呢,下面我就简单说一下其中的实现原理。

  ReentrantLock是可重入锁,也就是同一个线程可以多次获取锁,每获取一次就会进行一次计数,解锁的时候就会递减这个计数,直到计数变为0。

  它有两种实现,一种是公平锁,一种是非公平锁,那么默认是什么锁呢?看完如下代码想必你也知道了。  

/**
* Creates an instance of {@code ReentrantLock}.
* This is equivalent to using {@code ReentrantLock(false)}.
*/
public ReentrantLock() {
sync = new NonfairSync();
}

  它的内部结构的实现是如何的呢? 首先NonFairSync类是静态内部类,它继承了Sync。

/**
* Sync object for non-fair locks
*/
static final class NonfairSync extends Sync

  Sync继承了AbstractQueuedSynchronizer,简称AQS。同时Sync里边实现了tryRelease方法,因为公平锁和非公平锁都可以用这个方法释放锁。

/**
* Base of synchronization control for this lock. Subclassed
* into fair and nonfair versions below. Uses AQS state to
* represent the number of holds on the lock.
*/
abstract static class Sync extends AbstractQueuedSynchronizer

  继续看非公平锁的lock方法,采用CAS进行当前状态的设置state=0,表示没有线程占用,state=1表示已经有现成占用了,设置成功了,将当前线程设置为线程拥有者,并且是排他的。如果有现成占用了,那么需要进入acquire(1),需要获取一个锁。

/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}

  acquire方法首先进行tryAcquire,尝试获取锁,即调用nonfairTryAcquire,判断当前锁是否state=0, 则没有现成占用,则进行设置。如果被占用了判断该线程是否是当前线程占用的,如果是的话,那么可以进行重入,即当前可以获取锁,计数器进行加1。否则的话返回失败。返回失败后执行addWaiter方法,也就是添加到等待的队列。Node是一个双向列表,也就是把需要等待的线程放到放到Node,并且链接起来。

            /**
* Acquires in exclusive mode, ignoring interrupts. Implemented
* by invoking at least once {@link #tryAcquire},
* returning on success. Otherwise the thread is queued, possibly
* repeatedly blocking and unblocking, invoking {@link
* #tryAcquire} until success. This method can be used
* to implement method {@link Lock#lock}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
*/
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
} /**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
} /**
* Creates and enqueues node for current thread and given mode.
*
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* @return the new node
*/
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}

  接下来看一下Node的大致内容,有两个指针,一个是prev,一个是next,还保存着当前的线程。同时里边还有一个共享锁和独占锁,SHARED和EXCLUSIVE。ReentrantLock采用的就是独占锁。Semaphore,CountDownLatch等采用的是共享锁,即有多个线程可以同时获取锁。

static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null;
/**
* Link to predecessor node that current node/thread relies on
* for checking waitStatus. Assigned during enqueuing, and nulled
* out (for sake of GC) only upon dequeuing. Also, upon
* cancellation of a predecessor, we short-circuit while
* finding a non-cancelled one, which will always exist
* because the head node is never cancelled: A node becomes
* head only as a result of successful acquire. A
* cancelled thread never succeeds in acquiring, and a thread only
* cancels itself, not any other node.
*/
volatile Node prev; /**
* Link to the successor node that the current node/thread
* unparks upon release. Assigned during enqueuing, adjusted
* when bypassing cancelled predecessors, and nulled out (for
* sake of GC) when dequeued. The enq operation does not
* assign next field of a predecessor until after attachment,
* so seeing a null next field does not necessarily mean that
* node is at end of queue. However, if a next field appears
* to be null, we can scan prev's from the tail to
* double-check. The next field of cancelled nodes is set to
* point to the node itself instead of null, to make life
* easier for isOnSyncQueue.
*/
volatile Node next; /**
* The thread that enqueued this node. Initialized on
* construction and nulled out after use.
*/
volatile Thread thread; /**
* Link to next node waiting on condition, or the special
* value SHARED. Because condition queues are accessed only
* when holding in exclusive mode, we just need a simple
* linked queue to hold nodes while they are waiting on
* conditions. They are then transferred to the queue to
* re-acquire. And because conditions can only be exclusive,
* we save a field by using special value to indicate shared
* mode.
*/
Node nextWaiter;

  大致的思路我们看了一下,总体的流程图我画了一下。ReentrankLock内核采用的是AQS实现的,AQS里边采用的是双向链表,即如果当前线程未获取到锁将会加入到链表中。

  那么公平锁和非公平锁的实现的不同点在哪里呢?公平锁和非公平锁就差在 !hasQueuedPredecessors() ,也就是前边没有排队者的话,我就可以获取锁了。

/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

  如果当前线程之前还有线程等待就会返回true,如果当前节点是头结点,或者当前队列为空就会返回false。非公平锁没有这句话的判断,所以直接去竞争锁。

   /**
* Queries whether any threads have been waiting to acquire longer
* than the current thread.
*
* <p>An invocation of this method is equivalent to (but may be
* more efficient than):
* <pre> {@code
* getFirstQueuedThread() != Thread.currentThread() &&
* hasQueuedThreads()}</pre>
*
* <p>Note that because cancellations due to interrupts and
* timeouts may occur at any time, a {@code true} return does not
* guarantee that some other thread will acquire before the current
* thread. Likewise, it is possible for another thread to win a
* race to enqueue after this method has returned {@code false},
* due to the queue being empty.
*
* <p>This method is designed to be used by a fair synchronizer to
* avoid <a href="AbstractQueuedSynchronizer#barging">barging</a>.
* Such a synchronizer's {@link #tryAcquire} method should return
* {@code false}, and its {@link #tryAcquireShared} method should
* return a negative value, if this method returns {@code true}
* (unless this is a reentrant acquire). For example, the {@code
* tryAcquire} method for a fair, reentrant, exclusive mode
* synchronizer might look like this:
*
* <pre> {@code
* protected boolean tryAcquire(int arg) {
* if (isHeldExclusively()) {
* // A reentrant acquire; increment hold count
* return true;
* } else if (hasQueuedPredecessors()) {
* return false;
* } else {
* // try to acquire normally
* }
* }}</pre>
*
* @return {@code true} if there is a queued thread preceding the
* current thread, and {@code false} if the current thread
* is at the head of the queue or the queue is empty
* @since 1.7
*/
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}

  这个就是ReentrantLock的基本原理,接下来咱们继续看看与之一块使用的Condition。Condition是一个接口,它的实现类是ConditionObject。调用await的时候也会将当前线程的一些信息加入到队列当中。ConditionObject中有一个firstWaiter和LastWaiter分别指向的了等待队列的头和尾。

  当调用Condition的signal方法是,则会将第一个Node转换到同步队列,如下图所示。

  好了,总结一下:

  1. ReentrankLock默认是非公平锁。

  2.ReentrankLock的内部实现采用的AQS的双向链表实现。获取锁的线程会被封装成Node里边,供后续使用。

  3.公平锁采用判断当前Node是不是头结点,如果是的话就获取锁并做业务处理,不是头结点的不能获取所。

  4.非公平锁没有判断当前结点,采用CAS,谁第一个拿到了state=0,则视为获取锁。

  5.Condition的await和notify也采用类似的机制,当执行await是,会将当前线程信息的相关信息放入到Node的列表,记录firstWaiter和lastWaiter指向的信息。

  

  希望对大家有所帮助,如果有问题的请及时指出。

  

聊聊ReentrantLock的内部实现的更多相关文章

  1. 聊聊ReentrantLock实现原理

    ReentrantLock 是常用的锁,相对于Synchronized ,lock锁更人性化,阅读性更强 从LOCK切入 考虑下面的场景如果有A,B线程,同时去执行lock.lock(Lock loc ...

  2. 聊聊ReentrantLock基于AQS的公平锁和非公平锁的实现区别

    ReentrantLock锁的实现是基于AQS实现的,所以先简单说下AQS: AQS是AbstractQueuedSynchronizer缩写,顾名思义:抽象的队列同步器,它是JUC里面许多同步工具类 ...

  3. 【JUC】JDK1.8源码分析之ReentrantLock(三)

    一.前言 在分析了AbstractQueuedSynchronier源码后,接着分析ReentrantLock源码,其实在AbstractQueuedSynchronizer的分析中,已经提到过Ree ...

  4. java分析源码-ReentrantLock

    一.前言 在分析了 AbstractQueuedSynchronier 源码后,接着分析ReentrantLock源码,其实在 AbstractQueuedSynchronizer 的分析中,已经提到 ...

  5. Java中可重入锁ReentrantLock原理剖析

    本文由码农网 – 吴极心原创,转载请看清文末的转载要求,欢迎参与我们的付费投稿计划! 一. 概述 本文首先介绍Lock接口.ReentrantLock的类层次结构以及锁功能模板类AbstractQue ...

  6. ReentrantLock源码分析与理解

    在上面一篇分析ThreadExecutedPool的文章中我们看到线程池实现源码中大量使用了ReentrantLock锁,那么ReentrantLock锁的优势是什么?它又是怎么实现的呢? Reent ...

  7. 5.Lock接口及其实现ReentrantLock

    jdk1.7.0_79 在java.util.concurrent.locks这个包中定义了和synchronized不一样的锁,重入锁——ReentrantLock,读写锁——ReadWriteLo ...

  8. ReentrantLock和synchronized的性能对比

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytpo8 ReentrantLock和内部锁的性能对比     Reentran ...

  9. 并发编程(五)——AbstractQueuedSynchronizer 之 ReentrantLock源码分析

    本文将从 ReentrantLock 的公平锁源码出发,分析下 AbstractQueuedSynchronizer 这个类是怎么工作的,希望能给大家提供一些简单的帮助. AQS 结构 先来看看 AQ ...

随机推荐

  1. Dubbo多版本

    当服务提供者提供的服务接口出现不兼容升级时,可以设置版本号,使用多个版本号(version)进行过渡. 1).服务提供者配置文件 <dubbo:service ref="userSer ...

  2. kafka系列四、kafka架构原理、高可靠性存储分析及配置优化

    一.概述 Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Cl ...

  3. openstack常见问题解决方法总结

    一.创建实例失败: 首先用下面命令查看服务是否正常 1. nova-manage service list 如果不正常,则使用下面命令重启,如果还不行,则查看日志, 1. service nova-a ...

  4. (记录合并)union和union all的区别

    SQL UNION 操作符 UNION 操作符用于合并两个或多个 SELECT 语句的结果集. 请注意,UNION内部的SELECT语句必须拥有相同数量的列.列也必须拥有相似的数据类型.同时,每条SE ...

  5. [学习笔记]Java代码中各种类型变量的内存分配机制

    程序运行时,我们最好对数据保存到什么地方做到心中有数.特别要注意的是内存的分配.有六个地方都可以保存数据: (1) 寄存器 这是最快的保存区域,因为它位于和其他所有保存方式不同的地方:处理器内部.然而 ...

  6. sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM

    1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...

  7. Python-ccs高级选择器 盒模型

    css高级选择器与盒模型 脱离文档流 ,其中就是产生了BFC 1.组合选择器 - 群组选择器 /* 每个选择器位可以位三种基础选择器的任意一个, 用逗号隔开, 控制多个 */ div, #div, . ...

  8. Numpy详解

    NumPy 简介 Python并没有提供数组功能.虽然列表可以完成基本的数组功能,但它不是真正的数组,而且在数据量比较大时,使用列表的速度会很慢.为此,Numpy提供了真正的数组功能,以及对数据进行快 ...

  9. PHP 发送HTTP请求的几种方式

    1.curl仍然是最好的HTTP库,没有之一. 可以解决任何复杂的应用场景中的HTTP 请求2. 文件流式的HTTP请求比较适合处理简单的HTTP POST/GET请求,但不适用于复杂的HTTP请求3 ...

  10. poj2464扫描线好题,树状数组解法

    用树状数组解比线段树快了好多,难度也下降许多 分别用两个树状数组维护当前扫描线左侧和右侧的点,离散化y轴即可 #include<iostream> #include<cstring& ...