Deep Learning with PyTorch: A 60 Minute Blitz

作者: Soumith Chintala

部分翻译:me

本内容包含:

  • 在高级层面理解pytorch的tensor库以及神经网络。
  • 训练一个用于图像分类的小的神经网络。

This tutorial assumes that you have a basic familiarity of numpy

阅读本文前,你需要具有numpy的知识。

当然需要安装好pytorch和torchvision库。

开始

张量

张量类似于 NumPy的N维数组, 添加了可以在GPU上进行加速计算。

from __future__ import print_function
import torch

构建一个5*3的矩阵,没有初始化:

x = torch.empty(5, 3)    #全部都是0.0
print(x)

print(x.dtype) #数据类型  float32
print(type(x))

tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00],
[0.0000e+00, 1.5190e-42, 0.0000e+00],
[0.0000e+00, 1.1628e+27, 0.0000e+00]])
torch.float32
<class 'torch.Tensor'>

构建一个随机的矩阵

x = torch.rand(5, 3)
print(x)

tensor([[0.5689, 0.6057, 0.5855],
[0.4125, 0.2739, 0.7563],
[0.8674, 0.7034, 0.5811],
[0.9939, 0.5941, 0.6916],
[0.9194, 0.8064, 0.3800]])

构建一个填充为零的矩阵和类型为长整型(long):

x = torch.zeros(5, 3, dtype=torch.long)
print(x)

tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])

直接从数据构建一个Tensor:

x = torch.tensor([5.5, 3])
print(x)

tensor([5.5000, 3.0000])

或者基于现有的张量创建一个新的。这些方法会复用输入张量的性质,例如:dtype,除非一个新的值提供给用户。

print(x)
x = x.new_ones(5, 3, dtype=torch.double)      # new_* methods take in sizes    #这个搞不懂不建议
print(x)

x = torch.randn_like(x, dtype=torch.float)    # override dtype!    #产生同样类型的建议使用torch.randn_like, torch.ones_like(tensor)
print(x)

tensor([5.5000, 3.0000])
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
tensor([[-0.9820, -0.4020, 0.6092],
[-0.1853, 0.6631, -0.9670],
[-0.1934, 1.3743, -0.5245],
[ 1.0157, -0.0022, -0.1337],
[-0.7105, 0.4798, 2.2316]])

获取张量的大小:

print(x.size())

h,w=x.size()
print(h,w)

torch.Size([5, 3])
5 3

注意:torch.Size实际上是一个元组, 所以支持所有元组的操作。.

运算

运算有多种语法格式。在下面的例子里,我们看加法运算。

加法运算的语法1:

x = torch.rand(5, 3)

y = torch.rand(5, 3)
print(x + y)

tensor([[-0.3402,  0.4303,  0.7074],
[ 0.4024, 1.4834, -0.7325],
[ 0.4572, 1.8391, -0.0452],
[ 1.2108, 0.9043, 0.6351],
[-0.6921, 0.9278, 2.4968]])

加法运算的语法2:

print(torch.add(x, y))

tensor([[-0.3402,  0.4303,  0.7074],
[ 0.4024, 1.4834, -0.7325],
[ 0.4572, 1.8391, -0.0452],
[ 1.2108, 0.9043, 0.6351],
[-0.6921, 0.9278, 2.4968]])

把结果作为参数:

result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)

tensor([[-0.3402,  0.4303,  0.7074],
[ 0.4024, 1.4834, -0.7325],
[ 0.4572, 1.8391, -0.0452],
[ 1.2108, 0.9043, 0.6351],
[-0.6921, 0.9278, 2.4968]])

加法:直接加到某参数:

# adds x to y
y.add_(x)
print(y)

注意:任何以“_”结尾的运算,都会改变张量自身。例如: x.copy_(y), x.t_(), 将会改变 x.

可以使用NUmpy里的切片方法对Tensor切片!

print(x[:, 1])

缩放:如果你想对张量缩放/改变维度,可以使用torch.view:

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())
v=x.view(-1)  #-1直接把他拉直了。
print(v.size())

torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
torch.Size([16])

如果你有一个元素的张量,使用.item() 方法来得到其Python自身的数值类型。

x = torch.randn(1)
print(x)
print(x.item())
print(x[0])
print(x[0].item())

tensor([0.4783])
0.4782998859882355
tensor(0.4783)
0.4782998859882355

后续阅读:

torch有100+ 个张量运算符, 包括转置,切片,数学运算,线性代数,随机数,等,参见: https://pytorch.org/docs/stable/torch.html

连接NumPy

在numpy的数组和torch的tensor 间的转换非常容易。

torch的tensor和numpy的数组共享内部的存储单元,改变一个,另一个也改变。例子:

将Torch 张量转为一个Numpy数组

a = torch.ones(5)
print(a)

Out:

tensor([1., 1., 1., 1., 1.])
b = a.numpy()
print(b)

Out:

[1. 1. 1. 1. 1.]

可以看到数组里的值发生变换了,也就说一个张量和与之对应的numpy数组是共享内存的:

a.add_(1)
print(a)
print(b)

Out:

tensor([2., 2., 2., 2., 2.])
[2. 2. 2. 2. 2.]

将 NumPy 数组to Torch 张量

例子:

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

Out:

[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)

除CharTensor外,所有CPU上的张量支持与numpy 数组间的转换。

CUDA 张量

张量可以被移动到任何设备上,通过.to方法。

# let us run this cell only if CUDA is available  检测CUDA是否可用
# We will use ``torch.device`` objects to move tensors in and out of GPU 可以使用torch.device对象来移动对象
if torch.cuda.is_available():
device = torch.device("cuda") # a CUDA device object
y = torch.ones_like(x, device=device) # directly create a tensor on GPU
x = x.to(device) # or just use strings ``.to("cuda")``
z = x + y
print(z)
print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together!

Out:

tensor([2.9218], device='cuda:0')
tensor([2.9218], dtype=torch.float64)

这里注意的是torch.cuda.is_available()  torch.device('cuda')   device参数,.to(device)

什么是pytorch(1开始)(翻译)的更多相关文章

  1. 基于PyTorch的Seq2Seq翻译模型详细注释介绍(一)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qysh123/article/detai ...

  2. pytorch实现BiLSTM+CRF用于NER(命名实体识别)

    pytorch实现BiLSTM+CRF用于NER(命名实体识别)在写这篇博客之前,我看了网上关于pytorch,BiLstm+CRF的实现,都是一个版本(对pytorch教程的翻译), 翻译得一点质量 ...

  3. 20180122 PyTorch学习资料汇总

    PyTorch发布一年团队总结:https://zhuanlan.zhihu.com/p/33131356?gw=1&utm_source=qq&utm_medium=social 官 ...

  4. pytorch做seq2seq注意力模型的翻译

    以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): # -*- coding: utf-8 -*- " ...

  5. 什么是pytorch(4.数据集加载和处理)(翻译)

    数据集加载和处理 这里主要涉及两个包:torchvision.datasets 和torch.utils.data.Dataset 和DataLoader torchvision.datasets是一 ...

  6. 什么是pytorch(2Autograd:自动求导)(翻译)

    Autograd: 自动求导 pyTorch里神经网络能够训练就是靠autograd包.我们来看下这个包,然后我们使用它来训练我们的第一个神经网络. autograd 包提供了对张量的所有运算自动求导 ...

  7. 【小白学PyTorch】7 最新版本torchvision.transforms常用API翻译与讲解

    文章来自:微信公众号[机器学习炼丹术].欢迎关注支持原创 也欢迎添加作者微信:cyx645016617. 参考目录: 目录 1 基本函数 1.1 Compose 1.2 RandomChoice 1. ...

  8. 什么是pytorch(3神经网络)(翻译)

    神经网络 torch.nn 包可以用来构建神经网络. 前面介绍了 autograd包, nn 依赖于 autograd 用于定义和求导模型. nn.Module 包括layers(神经网络层), 以及 ...

  9. Pytorch系列教程-使用Seq2Seq网络和注意力机制进行机器翻译

    前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutor ...

随机推荐

  1. nginx:支持https

    1.查看nginx模块 nginx -V 注意是大写的V,小写的v是查看版本号的命令. 如果看到with-ssl那就是有的 2.注册ssl证书并下载 免费的ssl证书有: Let's Encrypt ...

  2. c#7的新特性

    1.out关键字 //可以直接声明使用 ",out int number); 2.元组 //有点类似匿名对象的样子 //用小括号包含变量,可以当做返回值,可以当做变量赋值等 //1.当做函数 ...

  3. PE文件 03 重定位表

    0x01  重定位表结构   重定位表是由数据目录表中的第六个成员指出的: typedef struct _IMAGE_DATA_DIRECTORY { DWORD VirtualAddress; D ...

  4. centos7安装配置tomcat

    第一步:下载Tomcat8压缩包 进入 http://tomcat.apache.org/download-80.cgi 下载tar.gz压缩包 第二步:用ftp工具把压缩包上传到/home/data ...

  5. maven3.5.0在win10中的安装及环境变量配置

    1.maven的下载地址http://maven.apache.org/download.cgi.如下图,下载apache-maven-3.5.0-bin.zip 2.解压缩到自己指定的文件下,mav ...

  6. pl/sql developer中dbms_output.put_line函数的运用

    pl/sql developer中dbms_output.put_line函数可以打印想显示在屏幕上的信息,运用时需要注意几点: 1 必须处于begin   ...  end: 2 需要先执行 set ...

  7. leetcode56:合并区间

    给出一个区间的集合,请合并所有重叠的区间.(解题思想来源于:https://blog.csdn.net/qq_34364995/article/details/80788049 ) 示例 1: 输入: ...

  8. LVS+OSPF+FULLNAT集群架构

    OSPF:OSPF(Open Shortest Path First开放式最短路径优先)是一个内部网关协议(Interior Gateway Protocol,简称IGP),用于在单一自治系统(aut ...

  9. CSS学习笔记之样式规划

    大家都知道规范灵活的代码布局对提升程序员开发和后期维护效率至关重要,因为css同一元素可能被不同偏重度的选择器命中,相同元素不同的选择器表达式的样式冲突导致的显示异常,再加上不规范的代码,经常让前端代 ...

  10. Delphi 10.3最新消息

    因为Google Play的要求,使Delphi官方被动的透出点消息:https://community.embarcadero.com/blogs/entry/deadline-approachin ...