// scalastyle:off println
package org.apache.spark.examples import scala.math.random import org.apache.spark._ /** Computes an approximation to pi */
object SparkPi {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Spark Pi")
val spark = new SparkContext(conf)
val slices = if (args.length > ) args().toInt else
val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow
val count = spark.parallelize( until n, slices).map { i =>
val x = random * -
val y = random * -
if (x*x + y*y < ) else
}.reduce(_ + _)
println("Pi is roughly " + 4.0 * count / n)
spark.stop()
}
}
[abc@search-engine---dev4 spark]$ ./bin/run-example SparkPi

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties

// :: INFO SparkContext: Running Spark version 1.6.

// :: WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

#进行acls用户权限认证

// :: INFO SecurityManager: Changing view acls to: abc

// :: INFO SecurityManager: Changing modify acls to: abc

// :: INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(abc); users with modify permissions: Set(abc)

// :: INFO Utils: Successfully started service 'sparkDriver' on port .

// :: INFO Slf4jLogger: Slf4jLogger started

#启动远程监听服务,端口是36739,Spark的通信工作由akka来实现

// :: INFO Remoting: Starting remoting

// :: INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@127.0.0.1:36739]

// :: INFO Utils: Successfully started service 'sparkDriverActorSystem' on port .

#注册MapOutputTracker,BlockManagerMaster,BlockManager

// :: INFO SparkEnv: Registering MapOutputTracker

// :: INFO SparkEnv: Registering BlockManagerMaster

#分配存储空间,包括磁盘空间和内存空间

// :: INFO DiskBlockManager: Created local directory at /tmp/blockmgr-8a68c39e-40e5-43ca-b21e-081ef8d278e2

// :: INFO MemoryStore: MemoryStore started with capacity 511.1 MB

// :: INFO SparkEnv: Registering OutputCommitCoordinator

// :: INFO Utils: Successfully started service 'SparkUI' on port .

// :: INFO SparkUI: Started SparkUI at http://127.0.0.1:4040

// :: INFO HttpFileServer: HTTP File server directory is /tmp/spark-3ef0b16c-fe81-482e--30571da062e7/httpd-796af3e2-122c---f4aa7d32bb04

#启动HTTP服务,可以通过界面查看服务和任务运行情况

// :: INFO HttpServer: Starting HTTP Server

// :: INFO Utils: Successfully started service 'HTTP file server' on port .

#启动SparkContext,并上传本地运行的jar包到http://127.0.0.1:54315

// :: INFO SparkContext: Added JAR file:/usr/local/spark/lib/spark-examples-1.6.-hadoop2.6.0.jar at http://127.0.0.1:54315/jars/spark-examples-1.6.1-hadoop2.6.0.jar with timestamp 1465285404966

// :: INFO Executor: Starting executor ID driver on host localhost

// :: INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port .

// :: INFO NettyBlockTransferService: Server created on 

// :: INFO BlockManagerMaster: Trying to register BlockManager

// :: INFO BlockManagerMasterEndpoint: Registering block manager localhost: with 511.1 MB RAM, BlockManagerId(driver, localhost, )

// :: INFO BlockManagerMaster: Registered BlockManager

#Spark提交了一个job给DAGScheduler

// :: INFO SparkContext: Starting job: reduce at SparkPi.scala:

#DAGScheduler收到一个编号为0的含有2个partitions分区的job

// :: INFO DAGScheduler: Got job  (reduce at SparkPi.scala:) with  output partitions

#将job转换为编号为0的stage

// :: INFO DAGScheduler: Final stage: ResultStage  (reduce at SparkPi.scala:)

#DAGScheduler在submitting stage之前,首先寻找本次stage的parents,如果missing parents为空,则submitting stage;

#如果有,会对parents stage进行递归submit stage,随之又将stage 0分成了2个task,提交给TaskScheduler的submitTasks方法。

#对于某些简单的job,如果它没有依赖关系,并且只有一个partition,这样的job会使用local thread处理而并不会提交到TaskScheduler上处理。

// :: INFO DAGScheduler: Parents of final stage: List()

// :: INFO DAGScheduler: Missing parents: List()

// :: INFO DAGScheduler: Submitting ResultStage  (MapPartitionsRDD[] at map at SparkPi.scala:), which has no missing parents

// :: INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1904.0 B, free 1904.0 B)

// :: INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1218.0 B, free 3.0 KB)

// :: INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost: (size: 1218.0 B, free: 511.1 MB)

// :: INFO SparkContext: Created broadcast  from broadcast at DAGScheduler.scala:

// :: INFO DAGScheduler: Submitting  missing tasks from ResultStage  (MapPartitionsRDD[] at map at SparkPi.scala:)

#TaskSchedulerImpl是TaskScheduler的实现类,接收了DAGScheduler提交的2个task

// :: INFO TaskSchedulerImpl: Adding task set 0.0 with  tasks

// :: INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID , localhost, partition ,PROCESS_LOCAL,  bytes)

// :: INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID , localhost, partition ,PROCESS_LOCAL,  bytes)

#Executor接收任务后则从远程的服务器中将运行jar包存放到本地,然后进行计算,并各自汇报了任务执行状态

// :: INFO Executor: Running task 1.0 in stage 0.0 (TID )

// :: INFO Executor: Running task 0.0 in stage 0.0 (TID )

// :: INFO Executor: Fetching http://127.0.0.1:54315/jars/spark-examples-1.6.1-hadoop2.6.0.jar with timestamp 1465285404966

// :: INFO Utils: Fetching http://127.0.0.1:54315/jars/spark-examples-1.6.1-hadoop2.6.0.jar to /tmp/spark-3ef0b16c-fe81-482e-8446-30571da062e7/userFiles-b021b090-3024-421c-b4b0-73fc9f723f44/fetchFileTemp4760324069006875921.tmp

// :: INFO Executor: Adding file:/tmp/spark-3ef0b16c-fe81-482e--30571da062e7/userFiles-b021b090--421c-b4b0-73fc9f723f44/spark-examples-1.6.-hadoop2.6.0.jar to class loader

// :: INFO Executor: Finished task 1.0 in stage 0.0 (TID ).  bytes result sent to driver

// :: INFO Executor: Finished task 0.0 in stage 0.0 (TID ).  bytes result sent to driver

#TaskSetManager、SparkContent各自收到任务完成报告

// :: INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID ) in  ms on localhost (/)

// :: INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID ) in  ms on localhost (/)

// :: INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool

// :: INFO DAGScheduler: ResultStage  (reduce at SparkPi.scala:) finished in 2.217 s

// :: INFO DAGScheduler: Job  finished: reduce at SparkPi.scala:, took 2.877995 s

#打印程序执行结果

Pi is roughly 3.14282

#Spark服务关闭

// :: INFO SparkUI: Stopped Spark web UI at http://127.0.0.1:4040

// :: INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!

// :: INFO MemoryStore: MemoryStore cleared

// :: INFO BlockManager: BlockManager stopped

// :: INFO BlockManagerMaster: BlockManagerMaster stopped

// :: INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!

// :: INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.

// :: INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.

// :: INFO SparkContext: Successfully stopped SparkContext

// :: INFO RemoteActorRefProvider$RemotingTerminator: Remoting shut down.

// :: INFO ShutdownHookManager: Shutdown hook called

// :: INFO ShutdownHookManager: Deleting directory /tmp/spark-3ef0b16c-fe81-482e--30571da062e7/httpd-796af3e2-122c---f4aa7d32bb04

// :: INFO ShutdownHookManager: Deleting directory /tmp/spark-3ef0b16c-fe81-482e--30571da062e7

Spark --- 启动、运行、关闭过程的更多相关文章

  1. DBA_Oracle Startup / Shutdown启动和关闭过程详解(概念)

    2014-08-07 Created By BaoXinjian

  2. 19、oracle的启动和关闭过程

    19.1.oracle数据库实例的启动分三步: 1.启动oracle例程: startup nomount; #读初始化参数文件,启动实例,但不安装数据库.当数据库以这个模式启动时,参数文件被读取, ...

  3. Oracle数据库的启动与关闭

    一.概述: Oracle数据库的启动分为启动数据库实例.装载数据库和打开数据库3个过程,对应数据库的3种模式. 启动数据库实例:根据数据库初始化参数文件中参数设置,在内存中为数据库分配SGA.PGA等 ...

  4. Oracle数据库启动和关闭

    在介绍oracle数据库的启动和关闭前,先看一下Oracle的参数文件. oracle参数文件 1.初始化参数文件 oracle的初始化参数文件分为spfilesid.ora.spfile.ora.i ...

  5. RAC 数据库的启动与关闭

    RAC数据库与单实例的差异主要表现在多个实例通过集群件来统一管理共享的资源.因此原有的单实例的管理方式,如数据库.监听器等的关闭启动等可以使用原有的方式进行,也可以通过集群管理工具,命令行来集中管理, ...

  6. Oracle数据库体系结构、启动过程、关闭过程

    一.Oracle数据库体系结构体系结构由下面组件组成:1.Oracle服务器(Server):由数据库实例和数据库文件组成,另外在用户建立与服务器的连接时启动服务器进程并分配PGA(程序全局区) (1 ...

  7. 老李推荐:第8章5节《MonkeyRunner源码剖析》MonkeyRunner启动运行过程-运行测试脚本

    老李推荐:第8章5节<MonkeyRunner源码剖析>MonkeyRunner启动运行过程-运行测试脚本   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化 ...

  8. Spark 启动过程(standalone)

    Spark启动过程 正常启动Spark集群时往往使用start-all.sh ,此脚本中通过调用start-master.sh和start-slaves.sh启动mater及workers节点. 1. ...

  9. 老李推荐:第8章7节《MonkeyRunner源码剖析》MonkeyRunner启动运行过程-小结

    老李推荐:第8章7节<MonkeyRunner源码剖析>MonkeyRunner启动运行过程-小结   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性 ...

  10. 老李推荐:第8章1节《MonkeyRunner源码剖析》MonkeyRunner启动运行过程-运行环境初始化

    老李推荐:第8章1节<MonkeyRunner源码剖析>MonkeyRunner启动运行过程-运行环境初始化   首先大家应该清楚的一点是,MonkeyRunner的运行是牵涉到主机端和目 ...

随机推荐

  1. 【IBM-WALA】Step by Step : use WALA to generate System Dependency Graph PDF and Dot File (Mac)

    Preparations: 1. IDE : eclipse (my version is luna) 2. maven (my version is 3.5.0) 3. git 4. JAVA 1. ...

  2. 深度学习之windows安装tensorflow

    1. 安装python3.5 2. 下载tensorflow-1.1.0rc2-cp35-cp35m-win_amd64.whl 3. pip install tensorflow-1.1.0rc2- ...

  3. J - 哈密顿绕行世界问题

    一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市. Input 前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行 ...

  4. LIBXML2库使用指南2

    3. 简单xml操作例子 http://blog.sina.com.cn/s/blog_4673bfa50100b0xj.html 了解以上基本知识之后,就可以进行一些简单的xml操作了.当然,还没有 ...

  5. python数据类型之字典(一)

    >>> dInfo = dict(Wangdachui=3000,Niuyun=2000,Linling=4500,Tianqi=8000) >>> dInfo { ...

  6. nginx js、css、图片 及 一些静态文件中出现 http://upstreamname:port 导致部分网页样式显示不正常

    nginx js.css.图片 及 一些静态文件中出现 http://upstreamname:port 导致部分网页样式显示不正常 http://upstreamname:port/....../. ...

  7. PAT甲级1055 The World's Richest【排序】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805421066272768 题意: 给定n个人的名字,年龄和身价. ...

  8. iPhone XS 能否经受的起寒冬的考验

    我的知乎文章链接: https://zhuanlan.zhihu.com/p/51782644 华北地区近日寒风凛冽,温度骤降,已经进入真正的冬天了,最低温度可以达到零下10度,我们手里的iPhone ...

  9. 用CSS画基本图形

    用CSS画基本图形 1.正方形 代码如下: #square { width: 100px; height: 100px; background: red; } 2.长方形 代码如下:   #recta ...

  10. SQL之层次查询

    层次查询是一种确定数据行间关系的一种操作手段.层次查询遍历的是一个树形结构.基本语法如下,以下语法嵌入到标准SQL中即可达到层次查询的目的: level,... ...[注释:伪列,用于select子 ...