#!/usr/bin/env python
# -*- coding: utf-8 -*-

# learn <<Problem Solving with Algorithms and Data Structures>>
# Release 3.0
# chengang882 @ 2016-12-20
# 它可以将常见的中缀表达式转换成后缀表达式,并计算这个表达示的值
# Completed implementation of a stack ADT

#数据结构
class Stack(object):
    def __init__(self):
        self.items = []

    def is_empty(self):
        return self.items == []

    def push(self, item):
        self.items.append(item)

    def pop(self):
        return self.items.pop()

    def peek(self):
        return self.items[len(self.items)-1]

    def size(self):
        return len(self.items)

# 实现中缀表达式转换为后缀表达式
def infix_to_postfix(infix_expr):
    prec = {}
    prec["*"] = 3
    prec["/"] = 3
    prec["+"] = 2
    prec["-"] = 2
    prec["("] = 1

    op_stack = Stack()
    postfix_list = []
    # 一定要有空格切割,显得不完美
    token_list = infix_expr.split()

    for token in token_list:
        if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789":
            postfix_list.append(token)
        elif token == "(":
            op_stack.push(token)
        elif token == ")":
            top_token = op_stack.pop()
            while top_token != "(":
                postfix_list.append(top_token)
                top_token = op_stack.pop()
        else:
            while (not op_stack.is_empty()) and \
                  (prec[op_stack.peek()] >= prec[token]):
                postfix_list.append(op_stack.pop())
            op_stack.push(token)
    while not op_stack.is_empty():
        postfix_list.append(op_stack.pop())
    print(" ".join(postfix_list))
    return " ".join(postfix_list)

# 计算后缀表达式的值
def postfix_eval(postfix_expr):
    operand_stack = Stack()
    token_list = postfix_expr.split()

    for token in token_list:
        if token in "0123456789":
            operand_stack.push(int(token))
        else:
            operand2 = operand_stack.pop()
            operand1 = operand_stack.pop()
            # 还是将后缀换成中缀再计算
            result = do_math(token, operand1, operand2)
            operand_stack.push(result)
    return operand_stack.pop()

def do_math(op, op1, op2):
    if op == "*":
        return op1 * op2
    elif op == "/":
        return op1 / op2
    elif op == "+":
        return op1 + op2
    elif op == "-":
        return op1 - op2
    else:
        raise("ERROR")

if __name__ == "__main__":
    print(postfix_eval(infix_to_postfix("5 * 8 + 2 * 3")))
    infix_to_postfix("( A + B ) * C - ( D - E ) * ( F + G )")
    print(postfix_eval('7 8 + 3 2 + /'))

 输出:

>>>
5 8 * 2 3 * +
46
A B + C * D E - F G + * -
3
>>>

  

利用stack结构,将中缀表达式转换为后缀表达式并求值的算法实现的更多相关文章

  1. 栈的应用实例——中缀表达式转换为后缀表达式

    声明:本程序读入一个中缀表达式,将该中缀表达式转换为后缀表达式并输出后缀表达式. 注意:支持+.-.*./.(),并且输入时每输入完一个数字或符号都要加一个空格,特别注意的是在整个表达式输入完成时也要 ...

  2. 练习3.20 a 将中缀表达式转换为后缀表达式

    //将中缀表达式转换为后缀表达式 int main() { ; ]={,,,,,,,}; char tmp; PtrToStack s; s = CreateStack( MaxSize ); ) { ...

  3. 数据结构Java实现06----中缀表达式转换为后缀表达式

    本文主要内容: 表达式的三种形式 中缀表达式与后缀表达式转换算法 一.表达式的三种形式: 中缀表达式:运算符放在两个运算对象中间,如:(2+1)*3.我们从小做数学题时,一直使用的就是中缀表达式. 后 ...

  4. javascript使用栈结构将中缀表达式转换为后缀表达式并计算值

    1.概念 你可能听说过表达式,a+b,a+b*c这些,但是前缀表达式,前缀记法,中缀表达式,波兰式,后缀表达式,后缀记法,逆波兰式这些都是也是表达式. a+b,a+b*c这些看上去比较正常的是中缀表达 ...

  5. 中缀表达式转换为后缀表达式(python实现)

    中缀表示式转换为后缀表达式 需要一个存放操作符的栈op_stack,输出结果的列表output 步骤: 从左到右遍历表达式: 1. 若是数字,直接加入到output 2. 若是操作符,比较该操作符和o ...

  6. Infix to postfix conversion 中缀表达式转换为后缀表达式

    Conversion Algorithm 1.操作符栈压入"#": 2.依次读入表达式的每个单词: 3.如果是操作数则压入操作数栈: 4.如果是操作符,则将操作符栈顶元素与要读入的 ...

  7. Python与数据结构[1] -> 栈/Stack[1] -> 中缀表达式与后缀表达式的转换和计算

    中缀表达式与后缀表达式的转换和计算 目录 中缀表达式转换为后缀表达式 后缀表达式的计算 1 中缀表达式转换为后缀表达式 中缀表达式转换为后缀表达式的实现方式为: 依次获取中缀表达式的元素, 若元素为操 ...

  8. 中缀表达式得到后缀表达式(c++、python实现)

    将中缀表达式转换为后缀表达式的算法思想如下: 从左往右开始扫描中缀表达式 遇到数字加入到后缀表达式 遇到运算符时: 1.若为‘(’,入栈 2.若为’)‘,把栈中的运算符依次加入后缀表达式,直到出现'( ...

  9. 中缀表达式转后缀表达式(Java代码实现)

    后缀表达式求值 后缀表达式又叫逆波兰表达式,其求值过程可以用到栈来辅助存储.例如要求值的后缀表达式为:1 2 3 + 4 * + 5 -,则求值过程如下: 遍历表达式,遇到数字时直接入栈,栈结构如下 ...

随机推荐

  1. Asp.Net MVC<八>:View的呈现

    ActionResult 原则上任何类型的响应都可以利用当前的HttpResponse来完成.但是MVC中我们一般将针对请求的响应实现在一个ActionResult对象中. public abstra ...

  2. Photon服务器进阶&一个新游戏的出产(二)

    继续上个文章说~ 接收其他人发过来的广播,在OnEvent中进行响应 比如说接收过来加入的消息 public void OnEvent(EventData eventData) { Debug.Log ...

  3. Java开发的基础条件:

    ------------Java开发的基础条件:Java相关的基础+对编程的自己的理解+调试代码+自己的坚持 一定要谦逊,不人云亦云,不去妄言某一门语言或技术好或坏!不是哪门技术有问题,而是(不会用才 ...

  4. Another app is currently holding the yum lock

    摘要 在使用yum安装的时候,出现该error. 错误 Another app is currently holding the yum lock; waiting for it to exit... ...

  5. Node.js Stream-进阶篇

    作者:美团点评技术团队链接:https://zhuanlan.zhihu.com/p/21681115来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 上篇(基础篇)主要 ...

  6. javascript 函数与对象

    javascript中的函数是非常重要的概念,也是比较难于理解的一个知识点! 下面就来聊聊函数: JS基于对象:什么是基于对象呢?简单的说所有代码都是"对象"; 比如函数: fun ...

  7. Virtual Box下配置Host-Only联网方式详解

    其实网络这类相关的文章很多,我只是想结合自己的实际情况,把我的经验写下来,给那些需要的人们吧. 主机:windows 7 虚拟机:CentOS6.0 VirtualBox:4.2.0 虚拟机在安装好之 ...

  8. BZOJ3436——小K的农场

    1.题意:大概是给一些制约限制,问是否存在合法解 2.分析:我们来观察这三个限制 农场a比农场b至少多种植了c个单位的作物     可以变成b 比 a至多多种了-c 农场a比农场b至多多种植了c个单位 ...

  9. Android 学习笔记

    1.sleep(),wait(),notify(),notifyAll() sleep()是线程类的静态方法,阻塞线程一定时间后再次使线程处于可以被调度运行的状态wait(),notify(),not ...

  10. 2.mongoDB add user in v3.0 问题的解决(Property 'addUser' of object admin is not a func)

    问题:创建mongodb帐户时,出错 > db.addUser('jyu', 'aerohive')  2015-08-05T20:03:02.767+0800 E QUERY    TypeE ...