51nod1228 序列求和(自然数幂和)
与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html
由于结果对MOD取模,使用逆元
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 2016, INF = 0x3F3F3F3F, MOD = 1000000007; LL bo[N];
LL cm[N][N], inv[N]; void init(){
inv[1] = 1;
for(int i = 2; i < N; i++){
inv[i] = (MOD - MOD / i ) * inv[MOD % i] % MOD;
} memset(cm, 0, sizeof(cm));
cm[0][0] = 1;
for(int i = 1; i < N; i++){
cm[i][0] = 1;
for(int j = 1; j <= i; j++){
cm[i][j] = (cm[i - 1][j - 1] + cm[i - 1][j]) % MOD;
}
} bo[0] = 1;
for(int i = 1; i < N; i++){
bo[i] = 0;
for(int j = 0; j < i; j++){
bo[i] += cm[i + 1][j] * bo[j] % MOD;
bo[i] %= MOD;
}
bo[i] = (-bo[i] * inv[i + 1] % MOD + MOD) % MOD;
}
bo[1] = inv[2];
} LL PowMod(LL a,LL b,LL MOD){//快速幂
LL ret=1;
while(b){
if(b&1) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ret;
} LL solve(LL n, LL m){
LL ans = 0;
for(LL k = 0; k <= m; k++){
ans += (cm[m + 1][k] * bo[k] % MOD) * PowMod(n % MOD, m + 1 - k, MOD) % MOD;
ans %= MOD;
}
ans = ans * inv[m + 1] % MOD;
return ans;
} int main(){
init();
int t;
cin >> t;
while(t--){
LL n, k;
scanf("%I64d %I64d", &n, &k);
printf("%I64d\n", solve(n, k));
}
return 0;
}
51nod1228 序列求和(自然数幂和)的更多相关文章
- 51Node1228序列求和 ——自然数幂和模板&&伯努利数
伯努利数法 伯努利数原本就是处理等幂和的问题,可以推出 $$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n ...
- 51nod1228 序列求和(伯努利数)
题面 传送门 题解 \(O(n^2)\)预处理伯努利数 不知道伯努利数是什么的可以看看这篇文章 不过这个数据范围拉格朗日差值应该也没问题--吧--大概-- //minamoto #include< ...
- HDU 2254 奥运(矩阵高速幂+二分等比序列求和)
HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 依据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- CF622F——自然数幂和模板&&拉格朗日插值
题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...
- 自然数幂和&伯努利数(Bernoulli)
二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- 51nod1229 序列求和 V2 【数学】
题目链接 B51nod1229 题解 我们要求 \[\sum\limits_{i = 1}^{n}i^{k}r^{i}\] 如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\) ...
- 51nod_1236_序列求和 V3 _组合数学
51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, ...
随机推荐
- Matplotlib 学习笔记
注:该文是上了开智学堂数据科学基础班的课后做的笔记,主讲人是肖凯老师. 数据绘图 数据可视化的原则 为什么要做数据可视化? 为什么要做数据可视化?因为可视化后获取信息的效率高.为什么可视化后获取信息的 ...
- MySQL复制配置(多主一从)
复制多主一从 replicaion 原理 复制有三个步骤:(分为三个线程 slave:io线程 sql线程 master:io线程) 1.master将改变记录到二进制日志(binary log)中( ...
- 一、Daily Scrum Meeting【Alpha】------Clover
[Alpha]Daily Scrum Meeting 第一次 [Alpha]Daily Scrum Meeting 第二次 [Alpha]Daily Scrum Meeting 第三次 [Alpha] ...
- TAC Alpha版本 冲冲冲!!!
第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 第9天 第10天 测试随笔 冲刺总结
- Day1-python基础1
本次学习内容 Python介绍 发展史 版本选择 install 第一个程序hello world 字符编码及注释 变量 用户输入 表达式if...else 一.Python介绍 1)Python由来 ...
- less学习笔记
less is more , than css less使用到的编译工具: koala less使用的软件: sublime text(推荐使用) 在less 中注释使用的是// ( /**/ ...
- HashMap Hasptable的区别
HashTable的应用非常广泛,HashMap是新框架中用来代替HashTable的类,也就是说建议使用HashMap,不要使用HashTable.可能你觉得HashTable很好用,为什么不用呢? ...
- Endnote专题之--output style相关问题
Endnote专题之--output style相关问题 1. 打开output style, Edit--->Output Styles--->选择要编辑的某个style模板,如下面的E ...
- Unicode文件读取 出现隐藏字符 (大坑)
C#读取文件..分析时发现应该15位的.. str.Lenght 却 16位.. 字符串复制出来一位位的数..就是15位.. 纳闷中突然想起来会不会是隐藏字符.. 输出 str[0].ToBytes( ...
- PHP 图片上传
PHP上传的简单案例: Html文件: <html> <form action="index.php" name="form" method= ...