描述:

给一个20×20的迷宫、起点坐标和终点坐标,问从起点是否能到达终点。

输入:

多个测例。输入的第一行是一个整数n,表示测例的个数。接下来是n个测例,每个测例占21行,第一行四个整数x1,y1,x2,y2是起止点的位置(坐标从零开始),(x1,y1)是起点,(x2,y2)是终点。下面20行每行20个字符,’.’表示空格;’X’表示墙。

输出:

每个测例的输出占一行,输出Yes或No。

输入样例:

2
0 0 19 19
....................
XXXXXXXXXXXXXXXXXXXX
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
0 0 19 19
....................
XXXXXXXXXXXXXXXXXXX.
....................
.XXXXXXXXXXXXXXXXXXX
....................
XXXXXXXXXXXXXXXXXXX.
....................
.XXXXXXXXXXXXXXXXXXX
....................
XXXXXXXXXXXXXXXXXXX.
....................
.XXXXXXXXXXXXXXXXXXX
....................
XXXXXXXXXXXXXXXXXXX.
XXXXXXXXXXXXXXXXXXX.
XXXXXXXXXXXXXXXXXXX.
XXXXXXXXXXXXXXXXXXX.
....................
.XXXXXXXXXXXXXXXXXXX
....................

输出样例:

No
Yes

代码:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <math.h> using namespace std;
int num[];
bool used[];
int couse=; bool check(int x,int y)
{
int k=,i=x+y;
while(k<=sqrt(i)&&i%k!=) k++;
if(k>sqrt(i)) return true;
return false;
} void print()
{
printf("%d",num[]);
for(int i=;i<=;i++)
printf(" %d",num[i]);
printf("\n");
} void Search(int x)
{
for(int i=;i<=;i++)
{
if(!used[i]&&check(num[x-],i)&&couse==)
{
num[x]=i;
used[i]=true;
if(x==&&check(num[],num[])&&couse==)
{print();couse++;return ;}
Search(x+);
used[i]=false;
}
}
} int main()
{
Search();
return ;
}

noj算法 迷宫问题 回溯法的更多相关文章

  1. noj算法 素数环 回溯法

    描述: 把1到20这重新排列,使得排列后的序列A满足:a. 任意相邻两个数之和是素数b. 不存在满足条件a的序列B使得:A和B的前k(0 <= k <= 19)项相同且B的第k+1项比A的 ...

  2. noj算法 堡垒问题 回溯法

    描述: 城堡是一个4×4的方格,为了保卫城堡,现需要在某些格子里修建一些堡垒.城堡中的某些格子是墙,其余格子都是空格,堡垒只能建在空格里,每个堡垒都可以向上下左右四个方向射击,如果两个堡垒在同一行或同 ...

  3. noj算法 踩气球 回溯法

    描述: 六一儿童节,小朋友们做踩气球游戏,气球的编号是1-100,两位小朋友各踩了一些气球,要求他们报出自己所踩气球的编号的乘积.现在需要你编一个程序来判断他们的胜负,判断的规则是这样的:如果两人都说 ...

  4. noj算法 装载问题 回溯法

    描述: 有两艘船,载重量分别是c1. c2,n个集装箱,重量是wi (i=1…n),且所有集装箱的总重量不超过c1+c2.确定是否有可能将所有集装箱全部装入两艘船. 输入: 多个测例,每个测例的输入占 ...

  5. P1605 迷宫 dfs回溯法

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  6. 五大常用算法之四:回溯法[zz]

    http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741376.html 1.概念 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试 ...

  7. 算法java实现--回溯法--图的m着色问题

    (转自:http://blog.csdn.net/lican19911221/article/details/26264471) 图的m着色问题的Java实现(回溯法) 具体问题描述以及C/C++实现 ...

  8. 回溯法最优装载问题(java)

    1.问题描述:      有一批共有 n 个集装箱要装上两艘载重量分别为 c1 和 c2 的轮船,其中集装箱 i 的重量为 w[i], 且重量之和小于(c1 + c2).装载问题要求确定是否存在一个合 ...

  9. 算法之--回溯法-迷宫问题【python实现】

    题目描述 定义一个二维数组N*M(其中2<=N<=10;2<=M<=10),如5 × 5数组下所示: int maze[5][5] = { 0, 1, 0, 0, 0, 0,  ...

随机推荐

  1. Java语法----Java中equals和==的区别

    [正文] 平时在学Android和Java语言的时候,总是碰到“equals”和“==”这两个字符,老感觉差不多:其实还是有一些区别的,今天干脆把它们彻底弄清楚. 一.java当中的数据类型和“==” ...

  2. 解决刷新页面vuex store中数据丢失的问题

    **问题背景:**页面刷新后,vuex中的数据丢失.这是因为:js代码是运行在内存中的,代码运行时的所有变量.函数也都是保存在内存中的.进行刷新页面的操作,以前申请的内存被释放,重新加载脚本代码,变量 ...

  3. Android艺术——探究Handler运行机制

    我们从开发的角度来说,Handler是Android 的消息机制的上层接口.说到Handler,大家都会说:哦,Handler这个我知道干什么的,更新UI.没错,Handler的确是用于更新UI的,具 ...

  4. Shell命令-系统信息及显示之uname、hostname

    文件及内容处理 - uname.hostname 1. uname:显示系统信息 uname命令的功能说明 uname 命令用于显示系统信息.uname 可显示电脑以及操作系统的相关信息 uname命 ...

  5. python控制台输出带颜色的文字方法

    #格式: 设置颜色开始 :\033[显示方式;前景色;背景色m   注意:开头部分的三个参数:显示方式,前景色,背景色是可选参数,可以只写其中的某一个:另外由于表示三个参数不同含义的数值都是唯一的没有 ...

  6. 关于base64转码解码

    刚好涉及到记录一下 1.JS BASE64 解码和编码 js代码: /** * * Base64 encode / decode * * @author haitao.tu * @date 2010- ...

  7. 爬虫 requests 模块

    requests 模块 介绍 使用requests可以模拟浏览器的请求, 比起之前用到的urllib,requests模块的api更加便捷(本质就是封装了urllib3) ps: requests库发 ...

  8. python学习日记(OOP访问限制)

    在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑. 但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的na ...

  9. Hdoj 1517.A Multiplication Game 题解

    Problem Description Stan and Ollie play the game of multiplication by multiplying an integer p by on ...

  10. [模板]Min_25筛

    用途 快速($O(\frac{n^{3/4}}{logn})$)地计算一些函数f的前缀和,以及(作为中间结果的)只计算质数的前缀和 一般要求f(p)是积性函数,$f(p)$是多项式的形式,且$f(p^ ...