【数据结构】红黑树与跳表-(SortSet)-(TreeMap)-(TreeSet)
SortSet
有序的Set,其实在Java中TreeSet是SortSet的唯一实现类,内部通过TreeMap实现的;而TreeMap是通过红黑树实现的;而在Redis中是通过跳表实现的;
SkipList
跳表,思想类似平衡二叉树,但又不一样;下面摘了一个介绍:
skiplist数据结构简介(摘自:https://www.cnblogs.com/Elliott-Su-Faith-change-our-life/p/7545940.html )
skiplist本质上也是一种查找结构,用于解决算法中的查找问题(Searching),即根据给定的key,快速查到它所在的位置(或者对应的value)。
我们在《Redis内部数据结构详解》系列的第一篇中介绍dict的时候,曾经讨论过:一般查找问题的解法分为两个大类:一个是基于各种平衡树,一个是基于哈希表。但skiplist却比较特殊,它没法归属到这两大类里面。
这种数据结构是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: A Probabilistic Alternative to Balanced Trees》。对细节感兴趣的同学可以下载论文原文来阅读。
skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。
我们先来看一个有序链表,如下图(最左侧的灰色节点表示一个空的头结点):
在这样一个链表中,如果我们要查找某个数据,那么需要从头开始逐个进行比较,直到找到包含数据的那个节点,或者找到第一个比给定数据大的节点为止(没找到)。也就是说,时间复杂度为O(n)。同样,当我们要插入新数据的时候,也要经历同样的查找过程,从而确定插入位置。
假如我们每相邻两个节点增加一个指针,让指针指向下下个节点,如下图:
这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半(上图中是7, 19, 26)。现在当我们想查找数据的时候,可以先沿着这个新链表进行查找。当碰到比待查数据大的节点时,再回到原来的链表中进行查找。比如,我们想查找23,查找的路径是沿着下图中标红的指针所指向的方向进行的:
23首先和7比较,再和19比较,比它们都大,继续向后比较。
但23和26比较的时候,比26要小,因此回到下面的链表(原链表),与22比较。
23比22要大,沿下面的指针继续向后和26比较。23比26小,说明待查数据23在原链表中不存在,而且它的插入位置应该在22和26之间。
在这个查找过程中,由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了。需要比较的节点数大概只有原来的一半。
利用同样的方式,我们可以在上层新产生的链表上,继续为每相邻的两个节点增加一个指针,从而产生第三层链表。如下图:
在这个新的三层链表结构上,如果我们还是查找23,那么沿着最上层链表首先要比较的是19,发现23比19大,接下来我们就知道只需要到19的后面去继续查找,从而一下子跳过了19前面的所有节点。可以想象,当链表足够长的时候,这种多层链表的查找方式能让我们跳过很多下层节点,大大加快查找的速度。
skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似于一个二分查找,使得查找的时间复杂度可以降低到O(log n)。但是,这种方法在插入数据的时候有很大的问题。新插入一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。删除数据也有同样的问题。
skiplist为了避免这一问题,它不要求上下相邻两层链表之间的节点个数有严格的对应关系,而是为每个节点随机出一个层数(level)。比如,一个节点随机出的层数是3,那么就把它链入到第1层到第3层这三层链表中。为了表达清楚,下图展示了如何通过一步步的插入操作从而形成一个skiplist的过程(点击看大图):
从上面skiplist的创建和插入过程可以看出,每一个节点的层数(level)是随机出来的,而且新插入一个节点不会影响其它节点的层数。因此,插入操作只需要修改插入节点前后的指针,而不需要对很多节点都进行调整。这就降低了插入操作的复杂度。实际上,这是skiplist的一个很重要的特性,这让它在插入性能上明显优于平衡树的方案。这在后面我们还会提到。
根据上图中的skiplist结构,我们很容易理解这种数据结构的名字的由来。skiplist,翻译成中文,可以翻译成“跳表”或“跳跃表”,指的就是除了最下面第1层链表之外,它会产生若干层稀疏的链表,这些链表里面的指针故意跳过了一些节点(而且越高层的链表跳过的节点越多)。这就使得我们在查找数据的时候能够先在高层的链表中进行查找,然后逐层降低,最终降到第1层链表来精确地确定数据位置。在这个过程中,我们跳过了一些节点,从而也就加快了查找速度。
刚刚创建的这个skiplist总共包含4层链表,现在假设我们在它里面依然查找23,下图给出了查找路径:
需要注意的是,前面演示的各个节点的插入过程,实际上在插入之前也要先经历一个类似的查找过程,在确定插入位置后,再完成插入操作。
至此,skiplist的查找和插入操作,我们已经很清楚了。而删除操作与插入操作类似,我们也很容易想象出来。这些操作我们也应该能很容易地用代码实现出来。
当然,实际应用中的skiplist每个节点应该包含key和value两部分。前面的描述中我们没有具体区分key和value,但实际上列表中是按照key进行排序的,查找过程也是根据key在比较。
红黑树:
这个介绍就多了,总结一下,一个自平衡的二叉查找树。
【数据结构】红黑树与跳表-(SortSet)-(TreeMap)-(TreeSet)的更多相关文章
- 【algo&ds】4.B树、字典树、红黑树、跳表
上一节内容[algo&ds]4.树和二叉树.完全二叉树.满二叉树.二叉查找树.平衡二叉树.堆.哈夫曼树.散列表 7.B树 B树的应用可以参考另外一篇文章 8.字典树Trie Trie 树,也叫 ...
- 【algo&ds】【吐血整理】4.树和二叉树、完全二叉树、满二叉树、二叉查找树、平衡二叉树、堆、哈夫曼树、B树、字典树、红黑树、跳表、散列表
本博客内容耗时4天整理,如果需要转载,请注明出处,谢谢. 1.树 1.1树的定义 在计算机科学中,树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结 ...
- 聊聊Mysql索引和redis跳表 ---redis的有序集合zset数据结构底层采用了跳表原理 时间复杂度O(logn)(阿里)
redis使用跳表不用B+数的原因是:redis是内存数据库,而B+树纯粹是为了mysql这种IO数据库准备的.B+树的每个节点的数量都是一个mysql分区页的大小(阿里面试) 还有个几个姊妹篇:介绍 ...
- 自己动手实现java数据结构(九) 跳表
1. 跳表介绍 在之前关于数据结构的博客中已经介绍过两种最基础的数据结构:基于连续内存空间的向量(线性表)和基于链式节点结构的链表. 有序的向量可以通过二分查找以logn对数复杂度完成随机查找,但由于 ...
- 高级数据结构---红黑树及其插入左旋右旋代码java实现
前面我们说到的二叉查找树,可以看到根结点是初始化之后就是固定了的,后续插入的数如果都比它大,或者都比它小,那么这个时候它就退化成了链表了,查询的时间复杂度就变成了O(n),而不是理想中O(logn), ...
- java数据结构——红黑树(R-B Tree)
红黑树相比平衡二叉树(AVL)是一种弱平衡树,且具有以下特性: 1.每个节点非红即黑; 2.根节点是黑的; 3.每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的; 4.如图所示,如果一个 ...
- 第三十三篇 玩转数据结构——红黑树(Read Black Tree)
1.. 图解2-3树维持绝对平衡的原理: 2.. 红黑树与2-3树是等价的 3.. 红黑树的特点 简要概括如下: 所有节点非黑即红:根节点为黑:NULL节点为黑:红节点孩子为黑:黑平衡 4.. 实现红 ...
- Java数据结构——红黑树
红黑树介绍红黑树(Red-Black Tree),它一种特殊的二叉查找树.执行查找.插入.删除等操作的时间复杂度为O(logn). 红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点 ...
- 红黑树之 原理和算法详细介绍(阿里面试-treemap使用了红黑树) 红黑树的时间复杂度是O(lgn) 高度<=2log(n+1)1、X节点左旋-将X右边的子节点变成 父节点 2、X节点右旋-将X左边的子节点变成父节点
红黑树插入删除 具体参考:红黑树原理以及插入.删除算法 附图例说明 (阿里的高德一直追着问) 或者插入的情况参考:红黑树原理以及插入.删除算法 附图例说明 红黑树与AVL树 红黑树 的时间复杂度 ...
随机推荐
- 使用scrapy爬虫,爬取17k小说网的案例-方法一
无意间看到17小说网里面有一些小说小故事,于是决定用爬虫爬取下来自己看着玩,下图这个页面就是要爬取的来源. a 这个页面一共有125个标题,每个标题里面对应一个内容,如下图所示 下面直接看最核心spi ...
- [insight] debug
python: 1. print理解流程 print('xy1') print('xy2') 可以更好地跟踪函数的执行流程,分析代码 2. 用python库 import pdb; pdb.set_t ...
- mysql tp5 find_in_set写法
[['','exp',"FIND_IN_SET(".$data['type'].",place_category)"]]
- Go命令官方指南【原译】
启动错误报告 编译包和依赖项 删除目标文件和缓存的文件 显示包或符号的文档 打印Go环境信息 更新包以使用新API Gofmt(重新格式化)包源 通过处理源生成Go文件 下载并安装包和依赖项 编译并安 ...
- Oracle XDB组件重建说明
Oracle XDB 组件重建 说明一. XDB 组件说明1.1 官网说明:XDB 全称XML DB,官网的说明如下:http://docs.oracle.com/cd/E11882_01/appde ...
- nginx rewrite规则笔记
优先级 在nginx的location和配置中location的顺序没有太大关系.正location表达式的类型有关.相同类型的表达式,字符串长的会优先匹配. 第一优先级:等号类型(=)的优先级最高. ...
- js &运算符什么意思,什么用处
“&&”连接两个表达式,当两侧表达式都为真时,返回TRUE.有一个为假则返回FALSE. 也就是说,符号前面的如果为true,就会执行符号后面的语句,如果符号前面的为false,那么后 ...
- 企业面试必会shell
企业面试题1: 使用for循环在/oldboy目录下通过随机小写10个字母加固定字符串oldboy批量创建10个html文件,名称例如为: [root@oldboy oldboy]# sh /serv ...
- 使用 Appium 测试微信小程序 Webview
打开调试功能 通过微信打开debugx5.qq.com,或者直接扫下面二维码 勾选[打开TBS内核Inspector调试功能] Chrome查看页面元素 手机连接电脑,查看是否连接成功.如下展 ...
- [转] iOS11.3 fastclick.js相关bug
最近遇到奇异的bug,在ios 11.3移动端页面 input输入框第一次触摸可以弹起键盘,后续再触摸需要很难弹起键盘,或者需要在输入框停一会才能弹起键盘. bug复现条件: 一.ios 11.3中a ...