1、 一维粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}&+\cfrac{\p}{\p x}(\rho u)=0,\\ \cfrac{\p}{\p t}(\rho u) &+\cfrac{\p}{\p x}\sez{ \rho u^2+p-\sex{\cfrac{4}{3}\mu+\mu'}\cfrac{\p u}{\p x} }=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho E+\cfrac{1}{2}\rho u^2}& +\cfrac{\p}{\p x}\sez{ \sex{\rho E+\cfrac{1}{2}\rho u^2+p}u-\sex{\cfrac{4}{3}\mu+\mu'}u\cfrac{\p u}{\p x} }\\ &=\cfrac{\p}{\p x}\sex{\kappa\cfrac{\p T}{\p x}}+\rho{\bf F}\cdot{\bf u},\\ \cfrac{\p }{\p t}(\rho Z)&+\cfrac{\p}{\p x}(\rho Zu) =-\bar k(\rho,p,Z)\rho Z; \eea \eeex$$ 或 $$\beex \bea \cfrac{\p\rho}{\p t}&+\cfrac{\p}{\p x}(\rho u)=0,\\ \cfrac{\p u}{\p t} &+u\cfrac{\p u}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho }\cfrac{\p }{\p x}\sez{\sex{\cfrac{4}{3}\mu+\mu'}\cfrac{\p u}{\p x}}=F,\\ T\cfrac{\p S}{\p t}&+Tu\cfrac{\p S}{\p x} -\cfrac{1}{\rho}\sex{\cfrac{4}{3}\mu+\mu'}\sex{\cfrac{\p u}{\p x}}^2 =\cfrac{1}{\rho}\cfrac{\p}{\p x}\sex{\kappa\cfrac{\p T}{\p x}} -\cfrac{\p S}{\p Z}\bar k(\rho,p,Z)TZ,\\ \cfrac{\p Z}{\p t}& +u\cfrac{\p Z}{\p x}=-\bar k(\rho,p,Z)Z. \eea \eeex$$

2.  一维理想反应流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t} +u\cfrac{\p u}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} &=F,\\ \cfrac{\p S}{\p t}+u\cfrac{\p S}{\p x}&= -\cfrac{\p S}{\p Z}\bar k(\rho,p,Z)Z,\\ \cfrac{\p Z}{\p t} +u\cfrac{\p Z}{\p x}&=-\bar k(\rho,p,Z)Z. \eea \eeex$$

[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.1 一维反应流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. echarts柱状图点击阴影部分触发事件

    在很多时候我们的柱状图分布不均匀,有些柱高可能会很小,如果通过myChart.on('click',function(){})来促发事件,可能在点击的时候不好操作,因为这个click事件是绑定在各个s ...

  2. SQL解析在美团的应用

    https://tech.meituan.com/SQL_parser_used_in_mtdp.html 数据库作为核心的基础组件,是需要重点保护的对象.任何一个线上的不慎操作,都有可能给数据库带来 ...

  3. ElasticSearch(七):Java操作elasticsearch基于smartcn中文分词查询

    package com.gxy.ESChap01; import java.net.InetAddress; import org.elasticsearch.action.search.Search ...

  4. 洛谷P2243 电路维修

    题目地址 转化为图论问题 对于每个交叉点(X,Y)抽象成节点.与它相邻的四个点中,可以直接连线的边权为0,否则边权为1. 用死了的SPFA解决图论问题. #include <cstring> ...

  5. CF1120D Power Tree

    沙发~~ 题意简述 给你一棵有根树,定义叶子为度数为1的点. 你可以以$ w_x \(的代价控制\)x\(点.选择控制之后可以给它的子树里的叶子加 上\)t (t \in Z )$. 你要以最小的总代 ...

  6. Elastic Stack-Elasticsearch使用介绍(一)

    一.前言     Elasticsearch对外提供RESTful API,下面的演示我们主要使用Postman,进行一系列的Demo演示,这款工具方便各位前端大大或者对接口调试的神器: 安装过于简单 ...

  7. java基础-开发工具IDEA

    常用快捷键 查找 查找:Ctrl + F Find In Path: Ctrl + F + Shift (比普通查找多了一个shift) Search EveryWhere : 双击Shift 视图 ...

  8. [转帖] CA如何保护自己的私钥

    作者:Gh0u1L5链接:https://www.zhihu.com/question/22260090/answer/648910720来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业 ...

  9. 动态生成table 列

    table.render({ elem: '#test-table-comelist' ,url: layui.setter.base + 'list/comelist' ,cols: [[]] ,d ...

  10. Lodop条形码竖条和值右端不对齐的解决方法

    当Lodop条形码设置的宽度比较短,数值比较多的时候,会出现条码的竖条和右端不对齐.个人测试了一下,发现解决办法有三种:1.增加条形码的宽度.2.隐藏条码本身的值,用text文本代替.3.修改条形码下 ...