5. 4 本构方程 - 应力与变形之间的关系

5.4.1. 本构关系的一般形式

1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\bf T}({\bf x},{\bf F}({\bf x})), \eex$$ 则称材料是 (Cauchy) 弹性的; 这里 $\hat {\bf T}$ 称为响应函数. 若再 ${\bf T}({\bf y})=\hat{\bf T}({\bf F}({\bf x}))$, 则称弹性体是齐次的, 否则称为非齐次的.

2. 以下讨论齐次弹性材料.

3. 客观性假设 (弹性体在刚体运动下不产生任何变形): $$\bex \hat{\bf T}({\bf Q}{\bf F})={\bf Q}\hat{\bf T}({\bf F}){\bf Q}^T. \eex$$

4. 材料称为超弹性的, 如果 $$\bex \exists\ W=\hat W({\bf F}),\st p_{ij}=\cfrac{\p \hat W({\bf F})}{\p f_{ij}}. \eex$$ 而 $W=\hat W({\bf F})$ 称为贮能函数 (应变能函数).

(1) 超弹性材料一定是弹性的.

(2) 对超弹性材料而言, 客观性假设由下式给出 $$\bex \hat W({\bf Q}{\bf F})=\hat W({\bf F}). \eex$$

5.4.2. 各向同性材料的本构方程

1. 定义: 如果弹性材料的本构方程 $$\bex {\bf T}({\bf y})=\hat {\bf T}({\bf F}({\bf x})), \eex$$ 中的响应函数 $\hat {\bf T}$ 对一切正交阵 ${\bf Q}$ 有 $$\bex \hat{\bf T}({\bf F}{\bf Q})=\hat {\bf T}({\bf F}), \eex$$ 则称材料是各向同性的.

2. 对超弹性材料而言, 各向同性由贮能函数给出: $$\bex \hat W({\bf F}{\bf Q})=\hat W({\bf F}),\quad\forall\mbox{ 正交阵 }{\bf Q}. \eex$$ (证明见习题 6).

3. 由 $$\beex \bea \hat{\bf T}({\bf F})&=\hat {\bf T}({\bf V}{\bf R})\quad\sex{\mbox{极分解}}\\ &=\hat{\bf T}({\bf V})\\ &=\tilde {\bf T}({\bf B}^\frac{1}{2}) \eea \eeex$$ 知各向同性材料的 Cauchy 应力张量可表为 ${\bf V}$ 或 ${\bf B}$ 的函数.

4. 对各向同性的弹性材料, 其本构方程有形式 $$\bex {\bf T}=\sum_{i=0}^2 \beta_i(I_B){\bf B}^i, \eex$$ 其中 $I_B$ 为 ${\bf B}$ 的三个主不变量. (Euler 坐标系下的 Cauchy 应力张量通过左 Cauchy - Green 应变张量给出)

5. 对各向同性的弹性材料, 其本构方程有形式 $$\bex {\bf \Sigma}=\sum_{i=0}^2 \gamma_i(I_C){\bf C}^i. \eex$$ (Lagrange 坐标下的 第二 Piola 应力张量通过右 Cauchy - Green 应变张量给出)

6. 对在自然状态 ($\hat{\bf T}({\bf I})={\bf 0}$) 附近的变形, 各向同性材料的本构方程有形式 $$\bex {\bf \Sigma}=\lm(\tr \tilde{\bf E}){\bf I}+2\mu\tilde{\bf E}+o(|\tilde{\bf E}|), \eex$$ 其中 $\lm,\mu$ 为常数, 称为 Lam\'e 常数, 而 $\tilde{\bf E}=\cfrac{1}{2}({\bf C}-{\bf I})$.

7. 如果 $$\bex {\bf \Sigma}=\lm(\tr\tilde{\bf E}){\bf I}+2\mu\tilde{\bf E}, \eex$$ 则称材料是 St. Venant - Kirchhoff 材料.

(1) St. Venant - Kirchhoff 材料满足客观性假设 $$\bex \hat {\bf T}({\bf Q}{\bf F})={\bf Q}\hat {\bf T}({\bf F}){\bf Q}^T. \eex$$ 仅须注意到 $$\beex \bea {\bf E}&=\cfrac{1}{2}({\bf C}-{\bf I})=\cfrac{1}{2}({\bf F}^T{\bf F}-{\bf I}),\\ J{\bf F}^{-1}\hat{\bf T}({\bf F}){\bf F}^{-T}&={\bf \Sigma}. \eea \eeex$$

(2) St. Venant - Kirchhoff 材料是各向同性的: $$\bex \hat{\bf T}({\bf F}{\bf Q})=\hat{\bf T}({\bf F}). \eex$$

5.4.3. 贮能函数的例子

1. 对 St. Venant - Kirchhoff 材料, $$\bex {\bf P}={\bf F}{\bf \Sigma}=\lm(\tr \tilde{\bf E}){\bf F}+2\mu {\bf F}\tilde{\bf E}. \eex$$ 而贮能函数 $$\bex W=\cfrac{\lm}{2}(\tr{\bf E})^2+\mu\tr {\bf E}^2. \eex$$ 事实上, $$\beex \bea \cfrac{\p}{\p f_{ij}}(\tr \tilde{\bf E})^2 &=\tr \tilde{\bf E}\cdot \cfrac{\p}{\p f_{ij}} \sez{\cfrac{1}{2}({\bf F}^T{\bf F}-{\bf I})}\\ &=\tr\tilde{\bf E}\cdot\cfrac{\p}{\p f_{ij}}\sez{\cfrac{1}{2}\sum_{m,n} f_{nm}{f_{nm}}}\\ &=\tr\tilde{\bf E}\cdot f_{ij}\\ &=\sez{(\tr\tilde{\bf E})^2{\bf F}}_{ij};\\ \cfrac{\p}{\p f_{ij}}\sex{\tr\tilde{\bf E}^2} &=\sum_{m,n}\cfrac{\p}{\p e_{mn}}\sez{\sum_{p,q}e_{p,q}e_{pq}}\cdot\cfrac{\p}{\p f_{ij}}e_{mn}\\ &=\sum_{m,n}2e_{mn}\cdot\cfrac{1}{2}\cfrac{\p}{\p f_{ij}} \sum_p f_{pm}f_{pn}\\ &=\sum_{mn}e_{mn}\sex{\delta_{mj}f_{in}+f_{im}\delta_{jn}}\\ &=\sum_n e_{jn}f_{in}+\sum_me_{mj}f_{im}\\ &=2({\bf F}\tilde{\bf E})_{ij}. \eea \eeex$$

2. 各向同性材料的贮能函数的形式 由客观性假设, $$\beex \bea &\quad\hat W({\bf Q}{\bf F})=\hat W({\bf F})\quad\sex{\forall\mbox{ 正交阵 }{\bf Q}}\\ &\ra \hat W({\bf F})=\hat W({\bf U})\quad\sex{{\bf Q}={\bf R}^T}\\ &\quad\quad\quad\quad\ =\tilde W({\bf C})\quad\sex{\tilde W({\bf C})=\hat W({\bf C}^\frac{1}{2})}. \eea \eeex$$ 由各向同性, $$\beex \bea \hat W({\bf F})&=\hat W({\bf F}{\bf Q})\\ &=\tilde W(({\bf F}{\bf Q})^T({\bf F}{\bf Q}))\\ &=\tilde W({\bf Q}^T{\bf C}{\bf Q})\\ &=\tilde W(\diag(\lm_1,\lm_2,\lm_3))\quad\sex{\mbox{取适当正交阵 }{\bf Q}}. \eea \eeex$$ 如此, $\hat W$ 仅依赖于 ${\bf C}$ 的主值, 而仅依赖于 ${\bf U}$ 的主值 $\mu_1,\mu_2,\mu_3$.

3. 贮能函数的例子

(1) Ogden 材料.

(2) Neo - Hookean 材料.

(3) Mooney - Rivlin 材料.

(3) 可压缩的 Ogden 材料.

(4) Ciarlet - Geymonet 材料.

5.4.4. 线性弹性 - 广义 Hooke 定律

1. 广义 Hookean 定律: 在自然状态下的参考构形的附近的小变形, $$\bex {\bf P}={\bf A}{\bf E}\quad\sex{p_{ij}=\sum_{kl}a_{ijkl}e_{kl}}, \eex$$ 其中 ${\bf E}$ 为无穷小应变张量.

(1) 由 ${\bf C}$ 的对称性知 $$\bex a_{ijkl}=a_{ijlk}. \eex$$

(2) 由 $\bar {\bf P}$ 的对称性知 $$\bex a_{ijkl}=a_{jikl}. \eex$$

(3) 若材料是超弹性的, 则 (见习题 4) $$\bex a_{ijkl}=a_{klij}. \eex$$

(4) 若材料是各向同性的, 由 ${\bf P}={\bf F}{\bf \Sigma}$ 及习题 4. 3, 我们有应力 - 应变关系: $$\bex p_{ij}=\lm (e_{11}+e_{22}+e_{33})\delta_{ij}+2\mu e_{ij}, \eex$$ 而 $$\bex a_{ijkl}=\lm \delta_{ij}\delta_{kl}+\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}}. \eex$$ 另一方面, 我们也有应变 - 应力关系: $$\bex e_{ij}=\cfrac{1}{2\mu}p_{ij}-\cfrac{\lm}{2\mu(3\lm+2\mu)}(p_{11}+p_{22}+p_{33})\delta_{ij}. \eex$$

2. Lam\'e 常数 $\lm,\mu$ 的物理意义

(1) Hookean 定律: 相对伸长较小时, 轴向应力与相对伸长成正比, 比值称为 Young 模量 $E$.

(2) 横截面直径的相对减少量与相对伸长量成正比, 比值称为 Poisson 比 $\nu$.

(3) 剪应力与它所引起的角度变化成正比, 称为剪切模量.

(4) 平均正应力与由变形产生的体积增长率之比称为体积弹性模量 $\kappa$.

(5) 这些模量与 Lam\'e 常数的关系: $$\beex \bea \sedd{\ba{ll} E=\cfrac{\mu(3\lm+2\mu)}{\lm+\mu}\\ \nu=\cfrac{\lm}{2(\lm+\mu)} \ea},&\quad\quad\sedd{\ba{ll} \lm=\cfrac{E\nu}{(1+\nu)(1-2\nu)}\\ \mu=\cfrac{E}{2(1+\nu)} \ea};\\ \mu:&\quad\quad\sex{\mbox{就是剪切模量}};\\ \kappa&=\lm+\cfrac{2}{3}\mu. \eea \eeex$$

[物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  6. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  9. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. Offset Management For Apache Kafka With Apache Spark Streaming

    An ingest pattern that we commonly see being adopted at Cloudera customers is Apache Spark Streaming ...

  2. MySQL之视图、触发器、事务、存储过程、函数

    一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...

  3. C# 使用微软自带的Speech进行语音输出

    1.在VS中使用微软自带的Speech进行语音播报,首先需要添加引用: 2.具体实现逻辑代码如下:

  4. odoo11 访问MSQL Server等第三发数据源

    odoo框架默认的访问时Postgres数据库,但在实际的应用场景中,不可避免的使用到其他数据库,所以有必要研究如何连接其他第三方数据库,这里分享下OCA的相关模块,具体的源代码在这里. 我将第三方的 ...

  5. Leetcode 226. Invert Binary Tree(easy)

    Invert a binary tree. 4 / \ 2 7 / \ / \ 1 3 6 9 to 4 / \ 7 2 / \ / \ 9 6 3 1 Trivia:This problem was ...

  6. Python是如何实现生成器的原理

    python中函数调用的实质原理: python解释器(即python.exe)其实是用C语言编写的, 在执行python代码时,实际上是在用一个叫做Pyeval_EvalFramEx(C语言的函数) ...

  7. springboot打jar包正常无法访问页面

    网上看到太多说版本换成 1.4.2.RELEASE. 可以将程序打成war包发布, 1.启动类改为 @Overrideprotected SpringApplicationBuilder config ...

  8. NOIP2015普及组复赛A 推销员

    题目链接:https://ac.nowcoder.com/acm/contest/243/A 题目大意: 略 分析: 方法就是把疲劳值从小到大排个序,然后从尾部开始一个一个取,当选到第i(i > ...

  9. DAY11、函数总结

    一.函数的对象 1.函数对象:函数名存放的就是函数的地址,所以函数名也是对像 2.函数对象的应用: 2.1.可以直接被引用   fn = cp_fn 2.2.可以当作函数参数传递    compute ...

  10. Announcing Microsoft Research Open Data – Datasets by Microsoft Research now available in the cloud

    The Microsoft Research Outreach team has worked extensively with the external research community to ...