【NLP】Conditional Language Modeling with Attention
Review: Conditional LMs
Note that, in the Encoder part, we reverse the input to the ‘RNN’ and it performs well.
And we use the Decoder network(also a RNN), and use the ‘beam search’ algorithm to generate the target statement word by word.
The above network is a translation model.But it still needs to optimizer.
A very essential part of the model is the [Attention mechanism].
Conditional LMs with Attention
First: talk about the [condition]
In last blog, we compress a lot of information in a finite-sized vector and use it as the condition. That is to say, in the ‘Decoder’, for each input we use this vector as the condition to predict the next word.
But is it really correct?
An obvious thing is that a finite-sized vector cannot contain all the information since the input sentence could have a very one length. And gradients have a long way to travl so even LSTMs could forget!
In Translation Question, we can solve the problem by this:
Represent a source sentence as a matrix whose size can be changeable.
Then Generate a target sentence from the matrix. (As the condition and the condition is transformed form that matrix)
So how does this do?
The very simpal way to fulfill that is [With Concatenation].
We have already known that the words can be represented by ‘embedding’ such as Word2Vec. And all the embeddings have the same size. For a sentence composed by n words, we can just put each word’s embedding together. So the matrix size is |vocabulary size|*n, which n is the length of sentence. That’s a really easy solution but it is useful. E.g.
Another solution proposed by Gehring et al. (2016,FAIR) is [With Convolutional Nets].
It is to say, we use all embedding of the word from the sentence to form the concatenation matrix (just like the above method), and then we use a CNN to handle this matrix using some filters. And final we also generate a new matrix to represent the information. And in my opinion, this is a bit like extracting advanced features from image processing. E.g.
The most important method is [using the Bidirectional RNNs].
For one side, we use a RNN to handle the embedding, and we get n hidden layers which n is the length of the word.
For another side, we use another RNN to handle the embedding, but we reverse the input and finally we also get n hidden layers.
We put the 2n hidden layers together to generate the conditional matrix. E.g.
There are some other ways needed to be founded.
So next to the important part: how to use the ‘Attention model’ and use the attention to generate the condition vector form the condition matrix F.
Firstly, considering the decoder RNN:
We have a ‘start hidden layer’ and then generate the next hidden layer using the input x and we still need a conditional vector.
Suppose we also had an attention vector a. We can generate the condition vector by doing this:
c = Fa. Where F is the matrix and a is the attention vector. This can be understood as weighting the conditional matrix so that we can pay more attention to the contents of a certain sentence.
E.g.
So How to generate the Attention Vector?
That is, how do we compute a.
We can do by the following method:
For the time t, we know the hidden layer Ht-1, and we do linear transformation to it to generate a vector r. ( r = VHt-1) V is the learned parameter. Then we take dot product with every column in the source matrix to compute the attention energy a. ( a = F.T*r). So we generate the attention vector a by using a softmax to Exponentiate and normalize it to 1.
That is a simplified version of Bahdanau et al.’s solution. Summary of it:
Another complex way to generate the attention vector is to use the [Nonlinear Attention-Energy Model].
Getting the r above, ( r = VHt-1) we generate a by: a = v.T * tanh(WF + r). Where v W and V is the learned parameter. How useful of the r is not to verify.
Summary
We put it all together and this is called the conditional LM with attention.
Attention in machine translation.
Add attention to seq2seq model translation: +11 BLEU.
An improvement in computing:
Note the difference form the above model. But whether it is useful is not sure.
About Gradients
We use the Gradient Descent.
Comprehension
Cho’s question: does a translator read and memorize the input sentence/document and then generate the output?
• Compressing the entire input sentence into a vector basically says “memorize the sentence”
• Common sense experience says translators refer back and forth to the input. (also backed up by eyetracking studies)
Image caption generation with attention: brief introduction
The main idea is that: we encode the picture to a matrix F and use it generate some attention and finally use the attention to generate the caption.
Generate matrix F:
Attention “weights” (a) are computed using exactly the same technique as discussed above.
Other techinques: Stochastic hard attention(sampling matrix F idea and not like the weighting matrix F idea). Learning Hard Attention. To be honesty, I don't know much about this.
【NLP】Conditional Language Modeling with Attention的更多相关文章
- 【NLP】Conditional Language Models
Language Model estimates the probs that the sequences of words can be a sentence said by a human. Tr ...
- 【NLP】Tika 文本预处理:抽取各种格式文件内容
Tika常见格式文件抽取内容并做预处理 作者 白宁超 2016年3月30日18:57:08 摘要:本文主要针对自然语言处理(NLP)过程中,重要基础部分抽取文本内容的预处理.首先我们要意识到预处理的重 ...
- [转]【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理 阅读目录
[NLP]干货!Python NLTK结合stanford NLP工具包进行文本处理 原贴: https://www.cnblogs.com/baiboy/p/nltk1.html 阅读目录 目 ...
- 【NLP】前戏:一起走进条件随机场(一)
前戏:一起走进条件随机场 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有 ...
- 【NLP】基于自然语言处理角度谈谈CRF(二)
基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...
- 【NLP】基于机器学习角度谈谈CRF(三)
基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...
- 【NLP】基于统计学习方法角度谈谈CRF(四)
基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...
- 【NLP】条件随机场知识扩展延伸(五)
条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应 ...
- 【NLP】Attention Model(注意力模型)学习总结
最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制( ...
随机推荐
- vue项目利用apicloud打包成apk过程
最近公司要求我们用apicloud做一个app,正好利用这个机会学习下app的制作过程~ 页面的开发过程跟我们平时开发一样,利用vue把页面全部完成,最后进行npm run build将项目打包. 接 ...
- MyEclipse自动补全
打开MyEclipse 6.5,然后"window"→"Preferences". 选择"java",展开,"Editor&quo ...
- Snapman系统中TCC执行效率和C#执行效率对比
Snapman集合了TCC编译器可以直接编译执行C语言脚本,其脚本执行效率和C#编译程序进行效率对比,包括下面4方面: 1.函数执行效率 2.数字转换成字符串 3.字符串的叠加 4.MD5算法 这是C ...
- 总结:当静态路由和BGP同时存在时路由优选BGP的两种方法
结论: 方法一.配置BGP协议的外部优先级比静态路由的优先级高,优选BGP. 优点:配置简单. 缺点:全局生效,如果用户有针对某个静态路由想提高优先级,不受动态路由影响,则针对每个静态路由都需要人为提 ...
- RN开发中的报错以及告警
报错一: Attempted to transition from state `RESPONDER_INACTIVE_PRESS_IN` to `RESPONDER_ACTIVE_LONG_PRES ...
- macos 常用快捷键及操作
通用: 拷贝相当于window下的复制非苹果键盘(command == win option == alt control == ctrl)Command + C 拷贝(Copy)Command + ...
- jenkins自动化工具使用教程(转)
自动化构建.测试.部署.代码检测越来越重要.主要有一下几点原因 企业做大,项目变多,多端支持(web,h5,小程序等) 微服务提倡高内聚低耦合,项目因拆分变多 DevOps自动化运维流行 集群化,高可 ...
- jQuery中toggle与slideToggle以及fadeToggle之间的不同
toggle()方法: 定义和用法 切换元素的可见状态.如果被选元素可见,则隐藏这些元素,如果被选元素隐藏,则显示这些元素. 语法: $(selector).toggle(speed,callback ...
- LeetCode算法题-Merge Two Binary Trees(Java实现)
这是悦乐书的第274次更新,第290篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第142题(顺位题号是617).提供两个二叉树,将其合并为新的二叉树,也可以在其中一个二 ...
- 英语口语练习系列-C10-up and down
<长恨歌>·白居易 长恨歌朗读视频,点我可听,thanks 长恨歌-白居易 汉皇重色思倾国,御宇多年求不得.杨家有女初长成,养在深闺人未识. 天生丽质难自弃,一朝选在君王侧.回眸一笑百媚生 ...