Python机器学习(基础篇---监督学习(集成模型))
集成模型
集成分类模型是综合考量多个分类器的预测结果,从而做出决策。
综合考量的方式大体分为两种:
1.利用相同的训练数据同时搭建多个独立的分类模型,然后通过投票的方式,以少数服从多数的原则作出最终的分类决策。(随机森林分类器)
2.按照一定次序搭建多个分类模型。这些模型之间彼此存在依赖关系。一般而言,每一个后续模型的加入都要对现有集成模型的综合性能有所贡献,进而不断提升更新过后的集成模型的性能。(梯度提升决策树)
代码1:
#导入pandas,并且重命名为pd
import pandas as pd
#通过互联网读取泰坦尼克乘客档案,并存储在变量titanic中
titanic=pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
#观察前几行数据
print(titanic.head())
#查看数据统计特性
titanic.info()
X=titanic[['pclass','age','sex']]
# print(X)
#对当前选择的特征进行探查
X.info()
y=titanic[['survived']]
# print(y)
#对于缺失的年龄信息,我们使用全体乘客的平均年龄代替,
#填充age缺失值,使用平均数或中位数
X['age'].fillna(X['age'].mean(),inplace=True)
#查看数据特征
X.info()
from sklearn.cross_validation import train_test_split
#随机采样25%的数据用于测试,剩下的75%用于构建训练集合
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=33)
#对类别型特征进行转换,成为特征向量
from sklearn.feature_extraction import DictVectorizer
vec=DictVectorizer(sparse=False)
X_train=vec.fit_transform(X_train.to_dict(orient='record'))
X_test=vec.transform(X_test.to_dict(orient='record'))
#使用单一决策树
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()
dtc.fit(X_train,y_train)
dtc_y_pred=dtc.predict(X_test)
#使用随机森林
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(X_train,y_train)
rfc_y_pred=rfc.predict(X_test)
#使用梯度提升决策树进行集成模型的训练以及预测分析
from sklearn.ensemble import GradientBoostingClassifier
gbc=GradientBoostingClassifier()
gbc.fit(X_train,y_train)
gbc_y_pred=gbc.predict(X_test)
#集成模型对泰坦尼克号乘客是否生还的预测性能
#使用模型自带的评估函数进行准确性测评
print('The Accuracy of decision tree is',dtc.score(X_test,y_test))
#从sklearn.metrics里导入classification_report模块
from sklearn.metrics import classification_report
print(classification_report(dtc_y_pred,y_test))
print('The Accuracy of random forest classifier is',rfc.score(X_test,y_test))
print(classification_report(rfc_y_pred,y_test))
print('The Accuracy of gradient tree boosting is',gbc.score(X_test,y_test))
print(classification_report(gbc_y_pred,y_test))
The Accuracy of decision tree is 0.7811550151975684
precision recall f1-score support
0 0.91 0.78 0.84 236
1 0.58 0.80 0.67 93
avg / total 0.81 0.78 0.79 329
The Accuracy of random forest classifier is 0.7811550151975684
precision recall f1-score support
0 0.91 0.78 0.84 236
1 0.58 0.80 0.67 93
avg / total 0.81 0.78 0.79 329
The Accuracy of gradient tree boosting is 0.790273556231003
precision recall f1-score support
0 0.92 0.78 0.84 239
1 0.58 0.82 0.68 90
avg / total 0.83 0.79 0.80 329
Python机器学习(基础篇---监督学习(集成模型))的更多相关文章
- Python机器学习基础教程-第2章-监督学习之决策树集成
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
- Python机器学习基础教程-第2章-监督学习之决策树
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
- Python机器学习基础教程-第2章-监督学习之线性模型
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
- Python机器学习基础教程-第2章-监督学习之K近邻
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
- Python 机器学习实战 —— 无监督学习(上)
前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾 ...
- Python 机器学习实战 —— 无监督学习(下)
前言 在上篇< Python 机器学习实战 -- 无监督学习(上)>介绍了数据集变换中最常见的 PCA 主成分分析.NMF 非负矩阵分解等无监督模型,举例说明使用使用非监督模型对多维度特征 ...
- Python机器学习基础教程
介绍 本系列教程基本就是搬运<Python机器学习基础教程>里面的实例. Github仓库 使用 jupyternote book 是一个很好的快速构建代码的选择,本系列教程都能在我的Gi ...
- Python机器学习基础教程-第1章-鸢尾花的例子KNN
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
- Python机器学习(基础篇---监督学习(线性分类器))
监督学习经典模型 机器学习中的监督学习模型的任务重点在于,根据已有的经验知识对未知样本的目标/标记进行预测.根据目标预测变量的类型不同,我们把监督学习任务大体分为分类学习与回归预测两类.监督学习任务的 ...
随机推荐
- 蓝牙 - 小米手环3 NFC版BLE协议研究
0x01 前言 最近买到了小米手环3nfc版本,基本上实现了我对手环的所有功能需求,高中的时候就缠线圈做过戒指一卡通,但是缺陷是不好看,而且只能储存一张卡,等 手环3nfc版我认为比较好的功能 可以储 ...
- react初探(一)之JSX、状态(state)管理、条件渲染、事件处理
前言: 最近收到组长通知我们项目组后面新开的项目准备统一技术栈为react,目前我的情况是三大框架只会angular和Vue.在实际项目中只使用过一次angular5,其余项目都是使用Vue写的.写篇 ...
- python3学习笔记
之前一直使用python2.7,最近打算学习下python3教程,再此记录下一些要点(未完待续...) 1.缩进 缩进有利有弊.好处是强迫你写出格式化的代码,但没有规定缩进是几个空格还是Tab.按照约 ...
- Django-models & QuerySet API
django中配置mysql数据库 1,首先配置settings.py. 一是在INSTALLED_APPS里面加入app名称: 二是配置数据库相关信息 INSTALLED_APPS = [ 'dja ...
- linux生成公钥私钥并上传到服务器上实现免密登陆
1. 生成密钥对 # -t 指定加密算法: -b 指定生成的密钥长度: -C 一句话,一般都填邮箱地址. # 更多参数说明可以在终端输入:ssh-keygen --help 查看 ssh-keygen ...
- js如何实现类的继承
方法一:借助构造函数实现继承 这种方法的缺点:原型链上的东西并没有被继承. 方法二:借助原型链实现继承 这种方法的缺点:改变了一个实例对象,另一个实例对象也跟着改变,因为s1.__proto__ == ...
- Oracle使用
Oracle数据库首先必须在服务器端安装,安装完成后在DBCA中创建数据库,然后在Net Configuration Assistant中配置监听程序和本地Net服务名.然后安装本地Oracle客户端 ...
- PAT 1136 A Delayed Palindrome
1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k ...
- ELK原理与介绍
为什么用到ELK: 一般我们需要进行日志分析场景:直接在日志文件中 grep.awk 就可以获得自己想要的信息.但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档.文本搜索太慢怎么办 ...
- 论文选读二:Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification
论文选读二:Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification 目前,阅读理解通常会给出 ...