0.参考资料

尊重他人的劳动成果,贴上参考的资料地址,本文仅作学习记录之用。

  1. https://www.codeproject.com/Articles/869059/Topological-sorting-in-Csharp
  2. https://songlee24.github.io/2015/05/07/topological-sorting/
  3. https://www.cnblogs.com/skywang12345/p/3711483.html

1.介绍

自己之前并没有接触过拓扑排序,顶多听说过拓扑图。在写前一篇文章的时候,看到 Abp 框架在处理模块依赖项的时候使用了拓扑排序,来确保顶级节点始终是最先进行加载的。第一次看到觉得很神奇,看了一下维基百科头也是略微大,自己的水平也是停留在冒泡排序的层次。ヽ(≧□≦)ノ

看了第二篇参考资料才大致了解,在此记录一下。

2.原理

先来一个基本定义:

在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:

  1. 每个顶点出现且只出现一次。
  2. 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。

有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。

例如,有一个集合它的依赖关系如下图:

可以看到他有一个依赖关系:

  1. Module D 依赖于 Module E 与 Module B 。
  2. Module E 依赖于 Module B 与 Module C 。
  3. Module B 依赖于 Module A 与 Module C 。
  4. Module C 依赖于 Module A 。
  5. Module A 无依赖 。

这个就是一个 DAG 图,我们要得到它的拓扑排序,一个简单的步骤如下:

  1. 从 DAG 图中选择一个没有前驱的顶点并输出。
  2. 从 DAG 图中删除该顶点,以及以它为起点的有向边。
  3. 重复步骤 1、2 直到当前的 DAG 图为空,或者当前图不存在无前驱的顶点为止

按照以上步骤,我们来进行一个排序试试。

最后的排序结果就是:

Module D -> Module E -> Module B -> Module C -> Module A

emmmm,其实一个有向无环图可以有一个或者多个拓扑序列的,因为有的时候会存在一种情况,即以下这种情况:

这个时候你就可能会有这两种结果

D->E->B->C->F->A

D->E->B->F->C->A

因为 F 与 C 是平级的,他们初始化顺序即便不同也没有什么影响,因为他们的依赖层级是一致的,不过细心的朋友可能会发现这个顺序好像是反的,我们还需要将其再反转一次。

3.实现

上面这种方法仅适用于已知入度的时候,也就是说这些内容本身就是存在于一个有向无环图之中的,如果按照以上方法进行拓扑排序,你需要维护一个入度为 0 的队列,然后每次迭代移除入度为 0 顶点所指向的顶点入度。

例如有以下图:

按照我们之前的算法,

  1. 首先初始化队列,将 5 与 4 这两个入度为 0 的顶点加入队列当中。
  2. 执行 While 循环,条件是队列不为空。
  3. 之后首先拿出 4 。
  4. 然后针对其指向的顶点 0 与 顶点 1 的入度减去 1。
  5. 减去指向顶点入度的时候同时判断,被减去入度的顶点其值是否为 0 。
  6. 这里 1 入度被减去 1 ,为 0 ,添加到队列。
  7. 0 顶点入度减去 1 ,为 1。
  8. 队列现在有 5 与 1 这两个顶点,循环判断队列不为空。
  9. 5 指向的顶点 0 入度 减去 1,顶点 0 入度为 0 ,插入队列。

这样反复循环,最终队列全部清空,退出循环,得到拓扑排序的结果4, 5, 2, 0, 3, 1 。

4.深度优先搜索实现

在参考资料 1 的代码当中使用的是深度优先算法,它适用于有向无环图。

有以下有向环图 G2:

对上图 G2 进行深度优先遍历,首先从入度为 0 的顶点 A 开始遍历:

它的步骤如下:

  1. 访问 A 。

  2. 访问 B 。

  3. 访问 C 。

    在访问了 B 后应该是访问 B 的另外一个顶点,这里可以是随机的也可以是有序的,具体取决于你存储的序列顺序,这里先访问 C 。

  4. 访问 E 。

  5. 访问 D 。

    这里访问 D 是因为 B 已经被访问过了,所以访问顶点 D 。

  6. 访问 F 。

    因为顶点 C 已经被访问过,所以应该回溯访问顶点 B 的另一个有向边指向的顶点 F 。

  7. 访问 G 。

因此最后的访问顺序就是 A -> B -> C -> E -> D -> F -> G ,注意顺序还是不太对哦。

看起来跟之前的方法差不多,实现当中,其 Sort() 方法内部包含一个 visited 字典,用于标记已经访问过的顶点,sorted 则是已经排序完成的集合列表。

在字典里 Key 是顶点的值,其 value 值用来标识是否已经访问完所有路径,为 true 则表示正在处理该顶点,为 false 则表示已经处理完成。

现在我们来写实现吧:

public static IList<T> Sort<T>(IEnumerable<T> source, Func<T, IEnumerable<T>> getDependencies)
{
var sorted = new List<T>();
var visited = new Dictionary<T, bool>(); foreach (var item in source)
{
Visit(item, getDependencies, sorted, visited);
} return sorted;
} public static void Visit<T>(T item, Func<T, IEnumerable<T>> getDependencies, List<T> sorted, Dictionary<T, bool> visited)
{
bool inProcess;
var alreadyVisited = visited.TryGetValue(item, out inProcess); // 如果已经访问该顶点,则直接返回
if (alreadyVisited)
{
// 如果处理的为当前节点,则说明存在循环引用
if (inProcess)
{
throw new ArgumentException("Cyclic dependency found.");
}
}
else
{
// 正在处理当前顶点
visited[item] = true; // 获得所有依赖项
var dependencies = getDependencies(item);
// 如果依赖项集合不为空,遍历访问其依赖节点
if (dependencies != null)
{
foreach (var dependency in dependencies)
{
// 递归遍历访问
Visit(dependency, getDependencies, sorted, visited);
}
} // 处理完成置为 false
visited[item] = false;
sorted.Add(item);
}
}

顶点定义:

// Item 定义
public class Item
{
// 条目名称
public string Name { get; private set; }
// 依赖项
public Item[] Dependencies { get; set; } public Item(string name, params Item[] dependencies)
{
Name = name;
Dependencies = dependencies;
} public override string ToString()
{
return Name;
}
}

调用:

static void Main(string[] args)
{
var moduleA = new Item("Module A");
var moduleC = new Item("Module C", moduleA);
var moduleB = new Item("Module B", moduleC);
var moduleE = new Item("Module E", moduleB);
var moduleD = new Item("Module D", moduleE); var unsorted = new[] { moduleE, moduleA, moduleD, moduleB, moduleC }; var sorted = Sort(unsorted, x => x.Dependencies); foreach (var item in sorted)
{
Console.WriteLine(item.Name);
} Console.ReadLine();
}

结果:

使用 C# 代码实现拓扑排序的更多相关文章

  1. [C#]使用 C# 代码实现拓扑排序 dotNet Core WEB程序使用 Nginx反向代理 C#里面获得应用程序的当前路径 关于Nginx设置端口号,在Asp.net 获取不到的,解决办法 .Net程序员 初学Ubuntu ,配置Nignix 夜深了,写了个JQuery的省市区三级级联效果

    [C#]使用 C# 代码实现拓扑排序   目录 0.参考资料 1.介绍 2.原理 3.实现 4.深度优先搜索实现 回到顶部 0.参考资料 尊重他人的劳动成果,贴上参考的资料地址,本文仅作学习记录之用. ...

  2. *HDU1285 拓扑排序

    确定比赛名次 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  3. 拓扑排序(三)之 Java详解

    前面分别介绍了拓扑排序的C和C++实现,本文通过Java实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处 ...

  4. 拓扑排序(二)之 C++详解

    本章是通过C++实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处:http://www.cnblogs. ...

  5. 拓扑排序(一)之 C语言详解

    本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...

  6. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  7. 【BZOJ-2938】病毒 Trie图 + 拓扑排序

    2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Di ...

  8. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  9. 拓扑排序&&欧拉(回)路

    摘要:最近是不适合写代码么?忘记初始化wa到死<_=_=_>.唔--最近在学习图论,从基础搞起,先搞了拓扑排序和欧拉(回)路. Part 0. 拓扑排序 ==挖坑== Part 1. 欧拉 ...

随机推荐

  1. 编写一份好的 Vimrc

    编写一份好的 Vimrc 目录 如何 Vimrc 色彩 空白字符与制表符 UI 配置 搜索 折叠 移动 用户自定义的前缀快捷按键 插件CtrlP 启动配置 终端Tmux 自动命令及其分组 备份 自定义 ...

  2. CyclicBarrier介绍

    应用场景 在某种需求中,比如一个大型的任务,常常需要分配好多子任务去执行,只有当所有子任务都执行完成时候,才能执行主任务,这时候,就可以选择CyclicBarrier了. 实例分析 我们需要统计全国的 ...

  3. mybatis中有趣的符号#与$

    ${ }是字符串替换,相当于直接显示数据,#{ }是预编译处理,相当于对数据加上双引号 即#是将传入的值当做字符串的形式,先替换为?号,然后调用PreparedStatement的set方法来赋值,而 ...

  4. 2018-2019-1 20189201 《LInux内核原理与分析》第九周作业

    那一天我二十一岁,在我一生的黄金时代.我有好多奢望.我想爱,想吃,还想在一瞬间变成天上半明半暗的云.那一年我二十一岁,在我一生的黄金时代.我有好多想法.我思索,想象,我不知该如何行动,我想知道一个城市 ...

  5. Ubuntu安装MySQL和Python库MySQLdb步骤

    一.安装MySQL服务器和客户端 执行以下命令: sudo apt-get install mysql-server-5.6 mysql-client-5.6 sudo apt-get install ...

  6. 微信小程序之微信登陆 —— 微信小程序教程系列(20)

    简介: 微信登陆,在新建一个微信小程序Hello World项目的时候,就可以看到项目中出现了我们的微信头像,其实这个Hello World项目,就有一个简化版的微信登陆.只不过是,还没有写入到咱们自 ...

  7. css 制作导航条布局

    代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...

  8. ajax(2)

    AJAX全称: Asynchronous JavaScript and XML    ( 异步的JavaScript 和 XML) Ajax的本质就是:XMLHttpRequest 对象: 案例: v ...

  9. C语言表达式和语句

    一.表达式 在C语言中,常量.变量.函数调用以及按C语言语法规则用运算符把运算数连接起来的式子都是合法的表达式 . 最后一类可以理解为运算符和运算对象的组合.例如: 算术表达式 = 算术运算符 + 运 ...

  10. [LeetCode] Exam Room 考试房间

    In an exam room, there are N seats in a single row, numbered 0, 1, 2, ..., N-1. When a student enter ...