Python并发编程之学习异步IO框架:asyncio 中篇(十)
大家好,并发编程
进入第十章。
好了,今天的内容其实还挺多的,我准备了三天,到今天才整理完毕。希望大家看完,有所收获的,能给小明一个赞。这就是对小明最大的鼓励了。
为了更好地衔接这一节,我们先来回顾一下上一节的内容。
上一节「」,我们首先介绍了,如何创建一个协程对象.
主要有两种方法
- 通过
async
关键字, - 通过
@asyncio.coroutine
装饰函数。
然后有了协程对象,就需要一个事件循环容器来运行我们的协程。其主要的步骤有如下几点:
- 将协程对象转为task任务对象
- 定义一个事件循环对象容器用来存放task
- 将task任务扔进事件循环对象中并触发
为了让大家,对生成器和协程有一个更加清晰的认识,我还介绍了yield
和async/await
的区别。
最后,我们还讲了,如何给一个协程添加回调函数。
好了,用个形象的比喻,上一节,其实就只是讲了协程中的单任务
。哈哈,是不是还挺难的?希望大家一定要多看几遍,多敲代码,不要光看哦。
那么这一节,我们就来看下,协程中的多任务
。
. 本文目录
- 协程中的并发
- 协程中的嵌套
- 协程中的状态
- gather与wait
. 协程中的并发
协程的并发,和线程一样。举个例子来说,就好像 一个人同时吃三个馒头,咬了第一个馒头一口,就得等这口咽下去,才能去啃第其他两个馒头。就这样交替换着吃。
asyncio
实现并发,就需要多个协程来完成任务,每当有任务阻塞的时候就await,然后其他协程继续工作。
第一步,当然是创建多个协程的列表。
# 协程函数
async def do_some_work(x):
print('Waiting: ', x)
await asyncio.sleep(x)
return 'Done after {}s'.format(x)
# 协程对象
coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4)
# 将协程转成task,并组成list
tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
]
第二步,如何将这些协程注册到事件循环中呢。
有两种方法,至于这两种方法什么区别,稍后会介绍。
- 使用
asyncio.wait()
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
- 使用
asyncio.gather()
# 千万注意,这里的 「*」 不能省略
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
最后,return的结果,可以用task.result()
查看。
for task in tasks:
print('Task ret: ', task.result())
完整代码如下
import asyncio
# 协程函数
async def do_some_work(x):
print('Waiting: ', x)
await asyncio.sleep(x)
return 'Done after {}s'.format(x)
# 协程对象
coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4)
# 将协程转成task,并组成list
tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
for task in tasks:
print('Task ret: ', task.result())
输出结果
Waiting: 1
Waiting: 2
Waiting: 4
Task ret: Done after 1s
Task ret: Done after 2s
Task ret: Done after 4s
. 协程中的嵌套
使用async可以定义协程,协程用于耗时的io操作,我们也可以封装更多的io操作过程,这样就实现了嵌套的协程,即一个协程中await了另外一个协程,如此连接起来。
来看个例子。
import asyncio
# 用于内部的协程函数
async def do_some_work(x):
print('Waiting: ', x)
await asyncio.sleep(x)
return 'Done after {}s'.format(x)
# 外部的协程函数
async def main():
# 创建三个协程对象
coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4)
# 将协程转为task,并组成list
tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
]
# 【重点】:await 一个task列表(协程)
# dones:表示已经完成的任务
# pendings:表示未完成的任务
dones, pendings = await asyncio.wait(tasks)
for task in dones:
print('Task ret: ', task.result())
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
如果这边,使用的是asyncio.gather()
,是这么用的
# 注意这边返回结果,与await不一样
results = await asyncio.gather(*tasks)
for result in results:
print('Task ret: ', result)
输出还是一样的。
Waiting: 1
Waiting: 2
Waiting: 4
Task ret: Done after 1s
Task ret: Done after 2s
Task ret: Done after 4s
仔细查看,可以发现这个例子完全是由 上面「协程中的并发
」例子改编而来。结果完全一样。只是把创建协程对象,转换task任务,封装成在一个协程函数里而已。外部的协程,嵌套了一个内部的协程。
其实你如果去看下asyncio.await()
的源码的话,你会发现下面这种写法
loop.run_until_complete(asyncio.wait(tasks))
看似没有嵌套,实际上内部也是嵌套的。
这里也把源码,贴出来,有兴趣可以看下,没兴趣,可以直接跳过。
# 内部协程函数
async def _wait(fs, timeout, return_when, loop):
assert fs, 'Set of Futures is empty.'
waiter = loop.create_future()
timeout_handle = None
if timeout is not None:
timeout_handle = loop.call_later(timeout, _release_waiter, waiter)
counter = len(fs)
def _on_completion(f):
nonlocal counter
counter -= 1
if (counter <= 0 or
return_when == FIRST_COMPLETED or
return_when == FIRST_EXCEPTION and (not f.cancelled() and
f.exception() is not None)):
if timeout_handle is not None:
timeout_handle.cancel()
if not waiter.done():
waiter.set_result(None)
for f in fs:
f.add_done_callback(_on_completion)
try:
await waiter
finally:
if timeout_handle is not None:
timeout_handle.cancel()
done, pending = set(), set()
for f in fs:
f.remove_done_callback(_on_completion)
if f.done():
done.add(f)
else:
pending.add(f)
return done, pending
# 外部协程函数
async def wait(fs, *, loop=None, timeout=None, return_when=ALL_COMPLETED):
if futures.isfuture(fs) or coroutines.iscoroutine(fs):
raise TypeError(f"expect a list of futures, not {type(fs).__name__}")
if not fs:
raise ValueError('Set of coroutines/Futures is empty.')
if return_when not in (FIRST_COMPLETED, FIRST_EXCEPTION, ALL_COMPLETED):
raise ValueError(f'Invalid return_when value: {return_when}')
if loop is None:
loop = events.get_event_loop()
fs = {ensure_future(f, loop=loop) for f in set(fs)}
# 【重点】:await一个内部协程
return await _wait(fs, timeout, return_when, loop)
. 协程中的状态
还记得我们在讲生成器的时候,有提及过生成器的状态。同样,在协程这里,我们也了解一下协程(准确的说,应该是Future对象,或者Task任务)有哪些状态。
Pending
:创建future,还未执行Running
:事件循环正在调用执行任务Done
:任务执行完毕Cancelled
:Task被取消后的状态
可手工 python3 xx.py
执行这段代码,
import asyncio
import threading
import time
async def hello():
print("Running in the loop...")
flag = 0
while flag < 1000:
with open("F:\\test.txt", "a") as f:
f.write("------")
flag += 1
print("Stop the loop")
if __name__ == '__main__':
coroutine = hello()
loop = asyncio.get_event_loop()
task = loop.create_task(coroutine)
# Pending:未执行状态
print(task)
try:
t1 = threading.Thread(target=loop.run_until_complete, args=(task,))
# t1.daemon = True
t1.start()
# Running:运行中状态
time.sleep(1)
print(task)
t1.join()
except KeyboardInterrupt as e:
# 取消任务
task.cancel()
# Cacelled:取消任务
print(task)
finally:
print(task)
顺利执行的话,将会打印 Pending
-> Pending:Runing
-> Finished
的状态变化
假如,执行后 立马按下 Ctrl+C,则会触发task取消,就会打印 Pending
-> Cancelling
-> Cancelling
的状态变化。
. gather与wait
还记得上面我说,把多个协程注册进一个事件循环中有两种方法吗?
- 使用
asyncio.wait()
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
- 使用
asyncio.gather()
# 千万注意,这里的 「*」 不能省略
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
asyncio.gather
和 asyncio.wait
在asyncio中用得的比较广泛,这里有必要好好研究下这两货。
还是照例用例子来说明,先定义一个协程函数
import asyncio
async def factorial(name, number):
f = 1
for i in range(2, number+1):
print("Task %s: Compute factorial(%s)..." % (name, i))
await asyncio.sleep(1)
f *= i
print("Task %s: factorial(%s) = %s" % (name, number, f))
接收参数方式
asyncio.wait
接收的tasks,必须是一个list对象,这个list对象里,存放多个的task。
它可以这样,用asyncio.ensure_future
转为task对象
tasks=[
asyncio.ensure_future(factorial("A", 2)),
asyncio.ensure_future(factorial("B", 3)),
asyncio.ensure_future(factorial("C", 4))
]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
也可以这样,不转为task对象。
loop = asyncio.get_event_loop()
tasks=[
factorial("A", 2),
factorial("B", 3),
factorial("C", 4)
]
loop.run_until_complete(asyncio.wait(tasks))
asyncio.gather
接收的就比较广泛了,他可以接收list对象,但是 *
不能省略
tasks=[
asyncio.ensure_future(factorial("A", 2)),
asyncio.ensure_future(factorial("B", 3)),
asyncio.ensure_future(factorial("C", 4))
]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
还可以这样,和上面的 *
作用一致,这是因为asyncio.gather()
的第一个参数是 *coros_or_futures
,它叫 非命名键值可变长参数列表
,可以集合所有没有命名的变量。
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(
factorial("A", 2),
factorial("B", 3),
factorial("C", 4),
))
甚至还可以这样
loop = asyncio.get_event_loop()
group1 = asyncio.gather(*[factorial("A" ,i) for i in range(1, 3)])
group2 = asyncio.gather(*[factorial("B", i) for i in range(1, 5)])
group3 = asyncio.gather(*[factorial("B", i) for i in range(1, 7)])
loop.run_until_complete(asyncio.gather(group1, group2, group3))
返回结果不同
asyncio.wait
asyncio.wait
返回dones
和pendings
dones
:表示已经完成的任务pendings
:表示未完成的任务
如果我们需要获取,运行结果,需要手工去收集获取。
dones, pendings = await asyncio.wait(tasks)
for task in dones:
print('Task ret: ', task.result())
asyncio.gather
asyncio.gather
它会把值直接返回给我们,不需要手工去收集。
results = await asyncio.gather(*tasks)
for result in results:
print('Task ret: ', result)
wait有控制功能
import asyncio
import random
async def coro(tag):
await asyncio.sleep(random.uniform(0.5, 5))
loop = asyncio.get_event_loop()
tasks = [coro(i) for i in range(1, 11)]
# 【控制运行任务数】:运行第一个任务就返回
# FIRST_COMPLETED :第一个任务完全返回
# FIRST_EXCEPTION:产生第一个异常返回
# ALL_COMPLETED:所有任务完成返回 (默认选项)
dones, pendings = loop.run_until_complete(
asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED))
print("第一次完成的任务数:", len(dones))
# 【控制时间】:运行一秒后,就返回
dones2, pendings2 = loop.run_until_complete(
asyncio.wait(pendings, timeout=1))
print("第二次完成的任务数:", len(dones2))
# 【默认】:所有任务完成后返回
dones3, pendings3 = loop.run_until_complete(asyncio.wait(pendings2))
print("第三次完成的任务数:", len(dones3))
loop.close()
输出结果
第一次完成的任务数: 1
第二次完成的任务数: 4
第三次完成的任务数: 5

Python并发编程之学习异步IO框架:asyncio 中篇(十)的更多相关文章
- Python并发编程之初识异步IO框架:asyncio 上篇(九)
大家好,并发编程 进入第九篇. 通过前两节的铺垫(关于协程的使用),今天我们终于可以来介绍我们整个系列的重点 -- asyncio. asyncio是Python 3.4版本引入的标准库,直接内置了对 ...
- Python并发编程之实战异步IO框架:asyncio 下篇(十一)
大家好,并发编程 进入第十一章. 前面两节,我们讲了协程中的单任务和多任务 这节我们将通过一个小实战,来对这些内容进行巩固. 在实战中,将会用到以下知识点: 多线程的基本使用 Queue消息队列的使用 ...
- Python并发编程之同步\异步and阻塞\非阻塞
一.什么是进程 进程: 正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 进程和程序的区别: 程序仅仅只是一堆代码而已,而进程指的是程序的运行过程. 需要强调的是:同一个程序执行两次,那也 ...
- Python并发编程二(多线程、协程、IO模型)
1.python并发编程之多线程(理论) 1.1线程概念 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程(流水线的工作需要电源,电源就相当于 ...
- python 并发编程 io模型 目录
python 并发编程 IO模型介绍 python 并发编程 socket 服务端 客户端 阻塞io行为 python 并发编程 阻塞IO模型 python 并发编程 非阻塞IO模型 python 并 ...
- Python并发编程06 /阻塞、异步调用/同步调用、异步回调函数、线程queue、事件event、协程
Python并发编程06 /阻塞.异步调用/同步调用.异步回调函数.线程queue.事件event.协程 目录 Python并发编程06 /阻塞.异步调用/同步调用.异步回调函数.线程queue.事件 ...
- Python并发编程05 /死锁现象、递归锁、信号量、GIL锁、计算密集型/IO密集型效率验证、进程池/线程池
Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 目录 Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密 ...
- Python并发编程内容回顾
Python并发编程内容回顾 并发编程小结 目录 • 一.到底什么是线程?什么是进程? • 二.Python多线程情况下: • 三.Python多进程的情况下: • 四.为什么有这把GIL锁? • 五 ...
- Python并发编程-多进程
Python并发编程-多进程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.多进程相关概念 由于Python的GIL全局解释器锁存在,多线程未必是CPU密集型程序的好的选择. ...
随机推荐
- vue 学习
1.安装vue.js 学习链接: https://cn.vuejs.org/v2/guide/ vue官方文档 vscode 软件框架 https://doc.vux.li/zh-CN/ vux文档
- rest_framework之权限源码剖析
权限问题 1.models.py 2.用户类型: 3.views.py: 假设订单相关业务(只有SVIP用户有权限) 假设用户信息相关业务(只有普通用户.VIP有权限) 4.运行结果: 基本使用 以上 ...
- css知识总结
---# 学习目标:> 1. 学会使用CSS选择器> 2. 熟记CSS样式和外观属性> 3. 熟练掌握CSS各种选择器> 4. 熟练掌握CSS各种选择器> 5. 熟练掌握 ...
- swust oj 987
输出用先序遍历创建的二叉树是否为完全二叉树的判定结果 1000(ms) 10000(kb) 2553 / 5268 利用先序递归遍历算法创建二叉树并判断该二叉树是否为完全二叉树.完全二叉树只能是同深度 ...
- DAY10函数
函数 函数就是可以重复利用的工具 函数可以完成指定代码块,函数就是是存放代码块的容器 函数的有点: 1.避免出现重复冗余的代码 2.让程序代码结构更清晰增加可读性 3 定义函数的语法 1. 函数名:使 ...
- Python基础之面向对象3(继承)
一.继承相关概念 1.语法: 2.定义: 3.优缺点: 4.相关概念: 5.相关内置函数: 6.继承内存图: 7.多继承: 二.多态相关概念 1.定义及作用: 2.重写概念: 3.运算符重载: 定义: ...
- db2数据库常见问题
db2数据库不能轻易改变表结构,不然表会进入暂挂状态,造成表被锁住. 解锁表语句:call sysproc.admin_cmd('reorg table <table name>');
- unittest中的测试固件
运行下面的两段代码,看看有什么不同? 第一段: import unittest from selenium import webdriver class F2(unittest.TestCase): ...
- 动态添加echarts
本次只贴js和jsp代码 jsp只需添加一个div即可, <div class="fLayout-right-box"> <hy:layoutArea width ...
- 时时监听input内容的改变
心得:我们都知道input有一个change事件,但是是在input元素失去焦点的时候发生,不能时时的监听input内容的改变. 刚开始的时候我是想用setInterval设置计时器的原理定时监听in ...