一、参数
criterion:
特征选择标准,【entropy, gini】。默认gini,即CART算法。

splitter:
特征划分标准,【best, random】。best在特征的所有划分点中找出最优的划分点,random随机的在部分划分点中找局部最优的划分点。默认的‘best’适合样本量不大的时候,而如果样本数据量非常大,此时决策树构建推荐‘random’。

max_depth:
决策树最大深度,【int,  None】。默认值是‘None’。一般数据比较少或者特征少的时候可以不用管这个值,如果模型样本数量多,特征也多时,推荐限制这个最大深度,具体取值取决于数据的分布。常用的可以取值10-100之间,常用来解决过拟合。

min_samples_split:
内部节点(即判断条件)再划分所需最小样本数,【int, float】。默认值为2。如果是int,则取传入值本身作为最小样本数;如果是float,则取ceil(min_samples_split*样本数量)作为最小样本数。(向上取整)

min_samples_leaf:
叶子节点(即分类)最少样本数。如果是int,则取传入值本身作为最小样本数;如果是float,则取ceil(min_samples_leaf*样本数量)的值作为最小样本数。这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。

min_weight_fraction_leaf:
叶子节点(即分类)最小的样本权重和,【float】。这个值限制了叶子节点所有样本权重和的最小值,如果小于这个值,则会和兄弟节点一起被剪枝。默认是0,就是不考虑权重问题,所有样本的权重相同。

一般来说如果我们有较多样本有缺失值或者分类树样本的分布类别偏差很大,就会引入样本权重,这时就要注意此值。

max_features:
在划分数据集时考虑的最多的特征值数量,【int值】。在每次split时最大特征数;【float值】表示百分数,即(max_features*n_features)

random_state:
【int, randomSate instance, None】,默认是None

max_leaf_nodes:
最大叶子节点数。【int, None】,通过设置最大叶子节点数,可以防止过拟合。默认值None,默认情况下不设置最大叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。如果特征不多,可以不考虑这个值,但是如果特征多,可以加限制,具体的值可以通过交叉验证得到。

min_impurity_decrease:
节点划分最小不纯度,【float】。默认值为‘0’。限制决策树的增长,节点的不纯度(基尼系数,信息增益,均方差,绝对差)必须大于这个阈值,否则该节点不再生成子节点。

min_impurity_split(已弃用):
信息增益的阀值。决策树在创建分支时,信息增益必须大于这个阈值,否则不分裂。(从版本0.19开始不推荐使用:min_impurity_split已被弃用,以0.19版本中的min_impurity_decrease取代。 min_impurity_split的默认值将在0.23版本中从1e-7变为0,并且将在0.25版本中删除。 请改用min_impurity_decrease。)

class_weight:
类别权重,【dict, list of dicts, balanced】,默认为None。(不适用于回归树,sklearn.tree.DecisionTreeRegressor)

指定样本各类别的权重,主要是为了防止训练集某些类别的样本过多,导致训练的决策树过于偏向这些类别。balanced,算法自己计算权重,样本量少的类别所对应的样本权重会更高。如果样本类别分布没有明显的偏倚,则可以不管这个参数。

presort:
bool,默认是False,表示在进行拟合之前,是否预分数据来加快树的构建。

对于数据集非常庞大的分类,presort=true将导致整个分类变得缓慢;当数据集较小,且树的深度有限制,presort=true才会加速分类。

二、方法
(1)训练(拟合):fit(X, y[, sample_weight])——fit(train_x, train_y)

(2)预测:predict(X)返回标签、predict_log_proba(X)、predict_proba(X)返回概率,每个点的概率和为1,一般取predict_proba(X)[:, 1]

(3)评分(返回平均准确度):score(X, y[, sample_weight])——score(test_x, test_y)。等效于准确率accuracy_score

(4)参数类:获取分类器的参数get_params([deep])、设置分类器的参数set_params(**params)。——print(clf.get_params()) ,clf.set_params(***)

DecisionTreeClassifier的其他方法:

apply(X[, check_input])
Returns the index of the leaf that each sample is predicted as.

返回每个样本被预测为叶子的索引。

decision_path(X[, check_input]) Return the decision path in the tree   返回树的决策路径
get_depth() Returns the depth of the decision tree.  获取决策树的深度
get_n_leaves() Returns the number of leaves of the decision tree.  获取决策树的叶子节点数

模型调参注意事项:
1、当样本少数量但是样本特征非常多的时候,决策树很容易过拟合,一般来说,样本数比特征数多一些会比较容易建立健壮的模型
2、如果样本数量少但是样本特征非常多,在拟合决策树模型前,推荐先做维度规约,比如主成分分析(PCA),特征选择(Losso)或者独立成分分析(ICA)。这样特征的维度会大大减小。再来拟合决策树模型效果会好。
3、推荐多用决策树的可视化,同时先限制决策树的深度(比如最多3层),这样可以先观察下生成的决策树里数据的初步拟合情况,然后再决定是否要增加深度。
4、在训练模型先,注意观察样本的类别情况(主要指分类树),如果类别分布非常不均匀,就要考虑用class_weight来限制模型过于偏向样本多的类别。
5、决策树的数组使用的是numpy的float32类型,如果训练数据不是这样的格式,算法会先做copy再运行。
6、如果输入的样本矩阵是稀疏的,推荐在拟合前调用csc_matrix稀疏化,在预测前调用csr_matrix稀疏化。

其他:
如果使用默认DecisionTreeClassifier的参数,得到的AUC较低,很可能是因为出现过拟合,需调整默认参数,避免过拟合。
---------------------
作者:linzhjbtx
来源:CSDN
原文:https://blog.csdn.net/linzhjbtx/article/details/85722187
版权声明:本文为博主原创文章,转载请附上博文链接!

sk-learn 决策树的超参数的更多相关文章

  1. SKlearn中分类决策树的重要参数详解

    学习机器学习童鞋们应该都知道决策树是一个非常好用的算法,因为它的运算速度快,准确性高,方便理解,可以处理连续或种类的字段,并且适合高维的数据而被人们喜爱,而Sklearn也是学习Python实现机器学 ...

  2. 超参数(Hyperparameter)

    什么是超参数? 机器学习模型中一般有两类参数:一类需要从数据中学习和估计得到,称为模型参数(Parameter)---即模型本身的参数.比如,线性回归直线的加权系数(斜率)及其偏差项(截距)都是模型参 ...

  3. 【笔记】CART与决策树中的超参数

    CART与决策树中的超参数 先前的决策树其实应该称为CART CART的英文是Classification and regression tree,全称为分类与回归树,其是在给定输入随机变量X条件下输 ...

  4. lecture16-联合模型、分层坐标系、超参数优化及本课未来的探讨

    这是HInton的第16课,也是最后一课. 一.学习一个图像和标题的联合模型 在这部分,会介绍一些最近的在学习标题和描述图片的特征向量的联合模型上面的工作.在之前的lecture中,介绍了如何从图像中 ...

  5. DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试、正则化以及优化--Week2优化算法

    1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我 ...

  6. deeplearning.ai 改善深层神经网络 week3 超参数调试、Batch正则化和程序框架 听课笔记

    这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4* ...

  7. [DeeplearningAI笔记]02_3.1-3.2超参数搜索技巧与对数标尺

    Hyperparameter search 超参数搜索 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1 调试处理 需要调节的参数 级别一:\(\alpha\)学习率是最重要的需要调节的 ...

  8. 【深度学习篇】--神经网络中的调优一,超参数调优和Early_Stopping

    一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比 ...

  9. 论文学习-系统评估卷积神经网络各项超参数设计的影响-Systematic evaluation of CNN advances on the ImageNet

    博客:blog.shinelee.me | 博客园 | CSDN 写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:ht ...

随机推荐

  1. Centos6搭建vsftpd

    CentOS 6.5下安装Vsftp,虚拟用户一.安装:1.安装Vsftpd服务相关部件:[root@localhost ~]# yum install vsftpd*Loaded plugins: ...

  2. 英语-TOEFL和GRE复习计划与资料

    目录 一. TOEFL (1). 阅读: 60 minutes (2). 听力: 50 minutes (3). 口语: 20 minutes (4). 作文: 60 minutes 单词准备 其他资 ...

  3. golang 日期时间处理

    package main import ( "fmt" "time" ) func main() { fmt.Println(time.Now()) //显示时 ...

  4. LINUX配置过程记录(二) 工具安装

    安装谷歌游览 sudo apt-get update sudo apt-get install google-chrome-stable Ubuntu 16.04下源码安装Catkin https:/ ...

  5. python day06

    深浅拷贝 1.值拷贝 ls1 = [1,2,3] ls2 = ls1 #ls2直接把栈区里ls1存的地址拿过来,也指向堆区里列表的id #原列表发生ls1改变(不是重新赋值),ls2也跟着发生改变 2 ...

  6. 作业2:分布式版本控制系统Git的安装与使用

    1.下载安装配置用户名和邮箱. 2. 创建工作目录并通过git init命令把这个目录变成Git可以管理的仓库. 3. 在工作目录下准备文本文件,建议下载Notepad++代替记事本. 4. 组合用g ...

  7. Elasticsearch 通关教程(六): 自动发现机制 - Zen Discoveryedit

    发现方式 Zen discovery是内建的.默认的.用于Elasticsearch的发现模块.它提供了单播和基于文件的发现,可以通过插件扩展到支持云环境和其他形式的发现. Zen Discovery ...

  8. 利用ELK分析Nginx日志生产实战(高清多图)

    本文以api.mingongge.com.cn域名为测试对象进行统计,日志为crm.mingongge.com.cn和risk.mingongge.com.cn请求之和(此二者域名不具生产换环境统计意 ...

  9. 分享收集的WebGL 3D学习资源

    大家好,我在本文中分享了我收集的WebGL 3D相关的博客.书籍.教程.demo等内容,希望对大家学习WebGL和3D有所帮助,谢谢- 相关博客 Wonder技术 Wonder是我们的产品,包含Web ...

  10. 解决hash冲突的方法

    复制粘贴于:https://www.cnblogs.com/wuchaodzxx/p/7396599.html#H1_2 开放地址法(线性探测法.二次探测.伪随机探测) 再哈希法 链地址法 建立公共溢 ...