CF 552 Neko does Maths
给出两个数a,b
求k 使得 a+k b+k有最小公倍数
a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小
因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大公约数了;
首先有个结论 gcd(x,y)=gcd(x,y-x) (y>x)
令c=gcd(x,y),那么x%c=0,y%c=0,(y-x)%c=0,所以gcd(x,y)=gcd(x,y-x)
因为题目中d=x-y的值不会变,所以我们就可以通过枚举d的因子,来凑a+k (d的因子也是(a+k)的因子)
拓展欧几里德 算法 待学。。。
#include<bits/stdc++.h>
using namespace std;
using LL = long long;
LL gcd(LL a, LL b){
return b ? gcd(b, a % b) : a;
}
LL lcm(LL a, LL b){
return a * b / gcd(a, b);
}
int main(){
ios::sync_with_stdio(false);
cin.tie();
cout.tie();
//gcd(a + k, b + k) == gcd(a - b, a + k);
LL a, b;
cin >> a >> b;
if(a < b) swap(a, b);
LL x = abs(a - b), ans = lcm(a, b), ansk = ;
for(LL i = , k; i * i <= x; i += ) if(x % i == ){
k = i - a % i;
if(lcm(a + k, b + k) < ans){
ans = lcm(a + k, b + k);
ansk = k;
}
k = x / i - a % (x / i);
if(lcm(a + k, b + k) < ans){
ans = lcm(a + k, b + k);
ansk = k;
}
}
if(a > b){ }
cout << ansk;
return ;
}
CF 552 Neko does Maths的更多相关文章
- Codeforces C.Neko does Maths
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...
- C. Neko does Maths
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- CF 552(div 3) E Two Teams 线段树,模拟链表
题目链接:http://codeforces.com/contest/1154/problem/E 题意:两个人轮流取最大值与旁边k个数,问最后这所有的数分别被谁给取走了 分析:看这道题一点思路都没有 ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
- codeforces#1152C. Neko does Maths(最小公倍数)
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- C. Neko does Maths(数论 二进制枚举因数)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...
- Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...
- CF #552(div3)G 最小lcm
题目链接:http://codeforces.com/contest/1154/problem/G 题意:lcm是最小公倍数,本题就是给你一个数组(可能会重复),要求你判断出那两个数的最小公倍数最小, ...
随机推荐
- Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异 ...
- XML配置spring session jdbc实现session共享
概述 session的基础知识就不再多说. 通常,我们会把一个项目部署到多个tomcat上,通过nginx进行负载均衡,提高系统的并发性.此时,就会存在一个问题.假如用户第一次访问tomcat1,并登 ...
- unix域数据报回射程序(不完整)
一.服务器程序 int main(int argc, char **argv) { int sockfd; struct sockaddr_un servaddr, cliaddr; sockfd = ...
- string与number转换
数字变字符串:str+'' 字符串变数字:str-0
- c语言编译四大步
-o: 指定生成后的文件名,后面跟指定的名称 四步:-E 预处理 > -S 编译 > -c 汇编 > 链接 -E: 表示预处理,生成文件为.i,会做宏(define)定义的展开.头文 ...
- This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its de 错误解决办法
这是我们开启了bin-log, 我们就必须指定我们的函数是否是1 DETERMINISTIC 不确定的2 NO SQL 没有SQl语句,当然也不会修改数据3 READS SQL DATA 只是读取数据 ...
- Spring AOP获取方法的参数名称和参数值
aop配置: <aop:aspectj-autoproxy expose-proxy="true" /> @Before(value = "execution ...
- Spring 基于注解的AOP实现
在本文开始之前,我要引入一张图,这张图的来源 https://blog.csdn.net/chenyao1994/article/details/79708496 ,版权归原作者所有,我借鉴了原作者的 ...
- 关于docker使用
docker讲解:http://dockone.io/article/6051 os: ubuntu 16.04;docker version 18.06.1-ce; (1)查看docker版本:do ...
- 题解 P3246 【[HNOI2016]序列】
很久之前做过这道题,但是跑得贼慢,现在用了可以被卡成 n m 的笛卡尔树做法,发现跑得贼快[雾 noteskey 介绍一种复杂度错误然鹅在随机数据下跑得贼快的算法: 笛卡尔树 方法就是 \(O~ n\ ...