一、目的

  以imagenet2012作为数据集,用Inception-v3对图像提取特征作为输入,来训练一个自编码器。

  以上作为预训练模型,随后在该自编码器的基础上,中间加入一个自表示层,将最终学习到的自表示层系数,作为相似度矩阵,对imagenet2012的1000类进行聚类。

二、预训练

  1.原理

  inception-v3+自编码器

  2.代码 

 import tensorflow as tf
import os
import numpy as np
import random
import tensorflow.contrib.slim as slim
import shutil tf.app.flags.DEFINE_string('model_dir', 'model/inception', 'Inception-v3 pretrain model dir')
tf.app.flags.DEFINE_string('class_list', 'imagenet12/train_class_list.txt', 'ILSVRC2012 image class list')
tf.app.flags.DEFINE_string('img_path', '/media/gpu/bdc7606d-0e3c-4870-9a5d-4926fd9961c0/gpu/Works/imagenet/others/ILSVRC2012_img_train', 'ILSVRC2012 image train path')
tf.app.flags.DEFINE_integer('max_train_steps_pre', 200000, 'max train num')
tf.app.flags.DEFINE_boolean('restore', True, 'wheather restore model and variable from previous saved')
tf.app.flags.DEFINE_string('checkpoint_path', 'model/pre/', 'model saved path')
tf.app.flags.DEFINE_string('feature_train_path','feature_train','ILSVRC2012 train feature save path')
tf.app.flags.DEFINE_integer('large_multi', 100, 'enlarge the feature data')
tf.app.flags.DEFINE_integer('width', 32, 'the width of feature input')
tf.app.flags.DEFINE_integer('inception_out_size', 2048, 'the dim of feature input,inception out dim')
tf.app.flags.DEFINE_integer('train_num_of_every_batch', 2000, 'change the data every 2000 epochs')
FLAGS = tf.app.flags.FLAGS kernel_num_list = [16, 32, 64] #channel num
kernel_size_list = [[3, 3], [3, 3], [3, 3]] #channel size
kernel_stride_list = [2, 2, 2] #stride
batch_size = 500 def get_inception_graph():
'''
load inception-v3 gragh for get_inception_output to
get the feature from Inception-v3
'''
with tf.gfile.FastGFile(os.path.join(FLAGS.model_dir, 'inception-v3.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
inception_out = tf.import_graph_def(graph_def,name='',return_elements=['pool_3/_reshape:0'])
return inception_out def create_graph_pre():
'''
create graph and loss
'''
inception_input = tf.placeholder(tf.float32, [None, FLAGS.width, FLAGS.inception_out_size/FLAGS.width, 1], name='inception_holder')
with tf.variable_scope('DSC'):
with tf.variable_scope('encoder'):
net = slim.conv2d(inception_input, kernel_num_list[0], kernel_size_list[0], stride = kernel_stride_list[0], scope='conv_0')
net = slim.conv2d(net, kernel_num_list[1], kernel_size_list[1], stride=kernel_stride_list[1], scope='conv_1')
net = slim.conv2d(net, kernel_num_list[2], kernel_size_list[2], stride=kernel_stride_list[2], scope='conv_2') with tf.variable_scope('decoder'):
net = slim.conv2d_transpose(net, kernel_num_list[1], kernel_size_list[2], stride=kernel_stride_list[2], scope='deconv_2')
net = slim.conv2d_transpose(net, kernel_num_list[0], kernel_size_list[1], stride=kernel_stride_list[1], scope='deconv_1')
net = slim.conv2d_transpose(net, 1, kernel_size_list[0], stride=kernel_stride_list[0], scope='deconv_0') restruct_loss = tf.losses.mean_squared_error(net, inception_input)
return restruct_loss,inception_input,net def get_inception_output(sess, img, txt_name,inception_out,save):
'''
get the inception-v3 feature for img and save in txt_name
'''
image_data = tf.gfile.FastGFile(img, 'rb').read()
output = sess.run(inception_out, feed_dict={'DecodeJpeg/contents:0': image_data})
output = np.squeeze(output)
output = output.reshape(FLAGS.width,-1)
if save == True:
np.savetxt(txt_name, output, fmt='%.6f')
return output def get_inception_batch(sess,inception_out,save=True):
'''
get inception-v3 feature for a batch as input of the new graph(create_graph_pre)
'''
class_list = np.loadtxt(FLAGS.class_list, dtype= str)[0:batch_size]
batch = [] for i, item in enumerate(class_list):
class_img_path = os.path.join(FLAGS.img_path, item)
class_img_list = os.listdir(class_img_path) img_name = random.choice(class_img_list)
txt_name = os.path.join(FLAGS.feature_train_path, item, img_name[:-4]+'txt')
img = os.path.join(class_img_path, img_name) if os.path.exists(txt_name):
print('%s Found!' % os.path.join(item, img_name[:-4]+'txt'))
batch_i = np.loadtxt(txt_name)
else:
#print('%s Extracting!' % os.path.join(item, img_name[:-4]+'txt'))
dir_name = os.path.join(FLAGS.feature_train_path, item)
if not os.path.exists(dir_name):
os.makedirs(dir_name)
batch_i = get_inception_output(sess, img,txt_name, inception_out,save=save)
batch.append(batch_i)
large_batch = np.array(batch) * FLAGS.large_multi return large_batch def reconstruct(sess, net, img_inception):
'''
get the loss for the input(img_inception) to varify the result of reconstruct
'''
output = sess.run([net], feed_dict={'inception_holder:0': img_inception})
img_inception=np.squeeze(img_inception)
output=np.squeeze(np.array(output))
test_loss = pow(img_inception-output,2) return output, sum(sum(test_loss))/(32*64) def interface_pre(): total_loss, inception_input, net = create_graph_pre() global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(1e-3, global_step, decay_steps=100, decay_rate=0.98, staircase=True)
train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(total_loss) saver = tf.train.Saver(max_to_keep=3) with tf.Session() as sess: if FLAGS.restore:
print('continue training from previous checkpoint')
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
pre_step = int(ckpt.replace(FLAGS.checkpoint_path + '-', ''))
saver.restore(sess, ckpt)
else:
#remove previous model
if os.path.exists(FLAGS.checkpoint_path):
shutil.rmtree(FLAGS.checkpoint_path)
os.makedirs(FLAGS.checkpoint_path)
sess.run(tf.global_variables_initializer())
pre_step = 0 inception_out = get_inception_graph() for step in range(FLAGS.max_train_steps_pre):
if step % FLAGS.train_num_of_every_batch == 0:
inception_output = get_inception_batch(sess, inception_out, save=False)
inception_output = inception_output.reshape(-1,inception_output.shape[1], inception_output.shape[2], 1)
perm = np.arange(batch_size)
np.random.shuffle(perm)
inception_output = inception_output[perm] inception_output = inception_output.reshape(-1,inception_output.shape[1], inception_output.shape[2], 1)
_, loss_value= sess.run([train_op, total_loss],feed_dict={'inception_holder:0':inception_output})
if step % 100 == 0:
print("step %d :total_loss= %f" % (step, loss_value))
if step % 500 == 0 and step > 0:
# save model
if step > 500 :
write_meta_graph = False
else:
write_meta_graph = True
all_step = pre_step + step
saver.save(sess, FLAGS.checkpoint_path, global_step=all_step, write_meta_graph=write_meta_graph)
#construct
img_inception = get_inception_output(sess, 'cropped_panda.jpg', 'cropped_panda.txt',inception_out,False)
img_out, test_loss = reconstruct(sess, net, FLAGS.large_multi*img_inception.reshape(-1,32,64,1))
print("test loss= %.5f" % test_loss) if __name__ == '__main__':
interface_pre()

三、训练

  1.原理

  以imagenet2012在inception-v3特征上的类平均向量作为输入,来训练模型,获得自表示系数作为聚类输入,从而获得聚类结果并可视化。

  2.代码  

 import tensorflow as tf
import os
import numpy as np
import random
import tensorflow.contrib.slim as slim
import tensorflow.contrib.slim.nets as nets
import shutil
from scipy.sparse import coo_matrix
from sklearn.cluster import spectral_clustering
from scipy.sparse.linalg import svds
from sklearn import cluster
from sklearn.preprocessing import normalize tf.app.flags.DEFINE_string('class_list', '../imagenet12/train_class_list.txt', 'ILSVRC2012 image class list')
tf.app.flags.DEFINE_string('img_path', '/media/gpu/bdc7606d-0e3c-4870-9a5d-4926fd9961c0/gpu/Works/imagenet/others/ILSVRC2012_img_train', 'ILSVRC2012 image train path')
tf.app.flags.DEFINE_integer('max_train_steps', 200000, 'max train num')
tf.app.flags.DEFINE_boolean('restore', False, 'wheather restore model and variable from previous saved')
tf.app.flags.DEFINE_string('pretrain_path', '../model/pre/', 'pretrain model path')
tf.app.flags.DEFINE_string('train_path', 'model/train/', 'train model path')
tf.app.flags.DEFINE_string('Coef_path','Coef/','save path of self_express xishu')
tf.app.flags.DEFINE_integer('large_multi', 100, '')
tf.app.flags.DEFINE_integer('width', 32, '')
tf.app.flags.DEFINE_integer('inception_out_size', 2048, '')
tf.app.flags.DEFINE_float('self_express_loss_weight',1,'')
tf.app.flags.DEFINE_float('regularizer_loss_weight',0.01,'')
tf.app.flags.DEFINE_integer('train_num_of_every_batch', 5000, '')
tf.app.flags.DEFINE_string('cluster_path','cluster','cluster result path')
tf.app.flags.DEFINE_string('data_path','avg_train_vector','imagenet2012 average feature path')
FLAGS = tf.app.flags.FLAGS kernel_num_list = [16, 32, 64]
kernel_size_list = [[3, 3], [3, 3], [3, 3]]
kernel_stride_list = [2, 2, 2]
batch_size = 1000
learn_rate=0.001 def create_graph_pre(): inception_input = tf.placeholder(tf.float32, [None, FLAGS.width, int(FLAGS.inception_out_size/FLAGS.width), 1], name='inception_holder')
with tf.variable_scope('DSC'):
with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(0.0005)):
with tf.variable_scope('encoder'):
net = slim.conv2d(inception_input, kernel_num_list[0], kernel_size_list[0], stride = kernel_stride_list[0], scope='conv_0')
net = slim.conv2d(net, kernel_num_list[1], kernel_size_list[1], stride=kernel_stride_list[1], scope='conv_1')
net = slim.conv2d(net, kernel_num_list[2], kernel_size_list[2], stride=kernel_stride_list[2], scope='conv_2')
self_express_x = net
net = tf.reshape(net, [batch_size, -1], name='reshape_to_flat')
Coef = slim.model_variable('Coef',
shape=[batch_size, batch_size],
initializer=tf.truncated_normal_initializer(stddev=0.1),
regularizer=slim.l2_regularizer(0.0005), trainable=True)
net = tf.matmul(Coef, net, name='mutmul') with tf.variable_scope('decoder'):
net = tf.reshape(net, [batch_size, int(FLAGS.width/8), int(FLAGS.inception_out_size/FLAGS.width/8), kernel_num_list[2]], name='reshape_to_normal')
self_express_x_c = net
net = slim.conv2d_transpose(net, kernel_num_list[1], kernel_size_list[2], stride=kernel_stride_list[2], scope='deconv_2')
net = slim.conv2d_transpose(net, kernel_num_list[0], kernel_size_list[1], stride=kernel_stride_list[1], scope='deconv_1')
net = slim.conv2d_transpose(net, 1, kernel_size_list[0], stride=kernel_stride_list[0], scope='deconv_0') reconstruct_loss = tf.losses.mean_squared_error(net, inception_input)
self_express_loss = FLAGS.self_express_loss_weight *tf.losses.mean_squared_error(self_express_x, self_express_x_c)
regularizer_loss = FLAGS.regularizer_loss_weight * tf.reduce_sum(tf.pow(Coef, 2.0))
#regularizer_loss = tf.add_n(tf.losses.get_regularization_losses()) loss = reconstruct_loss + self_express_loss + regularizer_loss
#loss = self_express_loss
return net, loss, Coef,reconstruct_loss, self_express_loss, regularizer_loss def get_inception_batch_avg():
class_list = np.loadtxt(FLAGS.class_list, dtype=str)[0:batch_size]
res=[]
for i in range(len(class_list)):
data_path = os.path.join(FLAGS.data_path,class_list[i]+'.txt')
data = np.loadtxt(data_path)
data = data.reshape(32,64)
res.append(data*100)
return np.array(res) def interface():
net, total_loss, Coef, reconstruct_loss, self_express_loss, regularizer_loss = create_graph_pre() global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(1e-4, global_step, decay_steps=100, decay_rate=0.98, staircase=True) train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(total_loss)
saver = tf.train.Saver(max_to_keep=3)
with tf.Session() as sess:
if FLAGS.restore:
print('continue training from previous checkpoint')
ckpt = tf.train.latest_checkpoint(FLAGS.train_path)
pre_step = int(ckpt.replace(FLAGS.train_path+'-', ''))
saver.restore(sess, ckpt)
else:
# remove previous model and Coef
if os.path.exists(FLAGS.train_path):
shutil.rmtree(FLAGS.train_path)
if os.path.exists(FLAGS.Coef_path):
shutil.rmtree(FLAGS.Coef_path)
os.makedirs(FLAGS.train_path)
os.makedirs(FLAGS.Coef_path)
# restore from pretrain
sess.run(tf.global_variables_initializer())
pre_step = 0
ckpt = tf.train.latest_checkpoint(FLAGS.pretrain_path)
variable_restore_op = slim.assign_from_checkpoint_fn(ckpt,slim.get_variables_to_restore(),ignore_missing_vars=True)
variable_restore_op(sess) inception_out = get_inception_graph()
inception_output = get_inception_batch_avg()
inception_output = inception_output.reshape(-1, inception_output.shape[1], inception_output.shape[2], 1)
for step in range(FLAGS.max_train_steps):
_, loss_value, Coef_val, rec_val, see_val, reg_val= \
sess.run([train_op, total_loss, Coef, reconstruct_loss, self_express_loss, regularizer_loss],
feed_dict={'inception_holder:0':inception_output})
if step % 100 == 0:
print("step %d :total_loss= %f,rec_loss= %f,see_val=%f,reg_val=%f"
% (step,loss_value,rec_val, see_val,reg_val)) if step % 1000 == 0 and step > 0:
if step > 500 :
write_meta_graph = False
else:
write_meta_graph = True
all_step = pre_step+step
saver.save(sess, FLAGS.train_path, global_step=all_step,write_meta_graph=write_meta_graph)
np.savetxt(FLAGS.Coef_path+str(all_step)+'.txt',Coef_val,fmt='%.6f') def thrC(C):
row,col = C.shape
for i in range(row):
for j in range(col):
C[i,j]=abs(C[i,j])
return C def post_proC(C,N):
# C: coefficient matrix
C = 0.5 * (C + C.T)
np.savetxt(FLAGS.cluster_path + 'C_abs.txt', C, fmt='%.6f')
graph = coo_matrix(C)
labels = spectral_clustering(graph, n_clusters=N)
return labels def vis(N,labels):
## visual
for i in range(N):
print(i)
index = [j for j in range(len(labels)) if labels[j]==i]
class_list=np.loadtxt(FLAGS.class_list,dtype=str) sub_class_list = class_list[index]
np.savetxt(os.path.join(FLAGS.cluster_path, str(i) + '.txt'), sub_class_list, fmt='%s')
if vis:
dir_path = os.path.join(FLAGS.cluster_path, str(i))
if os.path.exists(dir_path):
shutil.rmtree(dir_path)
os.makedirs(dir_path)
# copy an example to dir_path
for sub_class_item in sub_class_list:
img_path = os.path.join(FLAGS.img_path, sub_class_item)
random_img = random.choice(os.listdir(img_path))
src = os.path.join(img_path, random_img)
dst = os.path.join(dir_path, random_img) shutil.copyfile(src, dst) if __name__ == '__main__':
interface() C=np.loadtxt('Coef/199000.txt') #系数,相似度矩阵
C=thrC(C)
N=32
grp = post_proC(C,N) vis(N,grp)

tensorflow-用DASC结合Inception-v3对imagenet2012聚类实现的更多相关文章

  1. Inception V3 的 tensorflow 实现

    tensorflow 官方给出的实现:models/inception_v3.py at master · tensorflow/models · GitHub 1. 模型结构 首先来看 Incept ...

  2. 源码分析——迁移学习Inception V3网络重训练实现图片分类

    1. 前言 近些年来,随着以卷积神经网络(CNN)为代表的深度学习在图像识别领域的突破,越来越多的图像识别算法不断涌现.在去年,我们初步成功尝试了图像识别在测试领域的应用:将网站样式错乱问题.无线领域 ...

  3. 微调Inception V3网络-对Satellite分类

    目录 1. 流程概述 2. 准备数据集 2.1 Satellite数据集介绍 3. Inception V3网络 4. 训练 4.1 基于Keras微调Inception V3网络 4.2 Keras ...

  4. 1、VGG16 2、VGG19 3、ResNet50 4、Inception V3 5、Xception介绍——迁移学习

    ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding va ...

  5. 脸型分类-Face shape classification using Inception v3

    本文链接:https://blog.csdn.net/u011961856/article/details/77984667函数解析github 代码:https://github.com/adoni ...

  6. 网络结构解读之inception系列四:Inception V3

    网络结构解读之inception系列四:Inception V3   Inception V3根据前面两篇结构的经验和新设计的结构的实验,总结了一套可借鉴的网络结构设计的原则.理解这些原则的背后隐藏的 ...

  7. 从GoogLeNet至Inception v3

    从GoogLeNet至Inception v3 一.CNN发展纵览 我们先来看一张图片: 1985年,Rumelhart和Hinton等人提出了后向传播(Back Propagation,BP)算法( ...

  8. 经典分类CNN模型系列其五:Inception v2与Inception v3

    经典分类CNN模型系列其五:Inception v2与Inception v3 介绍 Inception v2与Inception v3被作者放在了一篇paper里面,因此我们也作为一篇blog来对其 ...

  9. [译]与TensorFlow的第一次接触(三)之聚类

    转自 [译]与TensorFlow的第一次接触(三)之聚类 2016.08.09 16:58* 字数 4316 阅读 7916评论 5喜欢 18 前一章节中介绍的线性回归是一种监督学习算法,我们使用数 ...

  10. 深度学习面试题29:GoogLeNet(Inception V3)

    目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...

随机推荐

  1. Error: Could not find or load main class Test

    问题描述 Linux 环境下运行 Java 程序时,执行 javac Test.java 生成 Test.class 文件,再执行 java Test 时报错:Error: Could not fin ...

  2. 做GUI的随笔

    用的SDL库 官方网站是:https://littlevgl.com/   改网站需要FQ 字库制作网站: https://debugdump.com/t_771.html

  3. springboot配置Druid数据源

    springboot配置druid数据源 Author:SimpleWu springboot整合篇 前言 对于数据访问层,无论是Sql还是NoSql,SpringBoot默认采用整合SpringDa ...

  4. SQL入门(4): 嵌入式SQL语言

    本节讲述内容: 1.嵌入式SQL 语言概述 2.变量声明与数据库连接 3.数据集与游标 4.可滚动游标与数据库的增删改 5.状态捕捉以及错误处理机制 (一)嵌入式SQL语言 之前我们所学的都是交互式S ...

  5. C++\CLI语法 在项目中的使用

    通常情况下,对一个标准的com组件进行集成,网上普遍使用的方式有: 1.#import *.dll 或 #import *.ocx的方式,VS编译器重新编译后,就会自动生成组件对应的*.tlh文件,该 ...

  6. 饮冰三年-人工智能-Python-22 Python初识Django

    1:一个简单的web框架 # 导包 from wsgiref.simple_server import make_server #自定义个处理函数 def application(environ,st ...

  7. (一)Knockout 计算属性

    1 Computed 首先,创建一个view model如下: <body> <p>The fullname is: <span data-bind="text ...

  8. [SignalR2] 认证和授权

    SignalR自身不提供任何用户认证特征,相反,是直接使用现有且基于(Claims-based)声明认证系统(关于这方面知识详见参考资料),非常明了,不解释,看代码中的验证代码: protected ...

  9. fillder--修改返回数据

    fillder面板中抓到想要的URL后: ①.在需要修改的url---右键------UNclocking For Editing(解除编辑功能) ②.承接上步,在数据结果的TextView模式下,返 ...

  10. 使用httpclient访问NLP应用接口例子

    参考网址: http://yuzhinlp.com/docs.html 接入前须知 接入条件 1.进入网站首页,点击注册成为语知科技用户 2.注册完成后,系统将提供语知科技用户唯一标识APIKey,并 ...