bzoj5104: Fib数列
Description
Input
一行,一个数字N,N < = 10^9+9
$r_1=\frac{1+\sqrt 5}{2}\\ r_2=\frac{1-\sqrt 5}{2}=-\frac{1}{r_1}\\ N=Fib_x=r_1^x-r_2^x\\ N^2=r_1^{2x}+r_2^{2x}-2(-1)^x\\ ±(r_1^x+r_2^x)=\sqrt{N^2+4(-1)^x}\\ \frac{N±\sqrt{N^2+4(-1)^x}}{2}=r_1^x,-r_2^x\\ x=min(log_{r_1}(\frac{N±\sqrt{N^2+4(-1)^x}}{2}),log_{r_2}(-\frac{N±\sqrt{N^2+4(-1)^x}}{2}))\\ 枚举x的奇偶,利用离散对数计算答案$
#include<cstdio>
typedef long long i64;
const int P=1e9+,g=,sqrt5=,I2=(P+)/,B=;
const int r1=(P++sqrt5)/,r2=(P+-sqrt5)/;
const int lr1=,lr2=;
inline int mul(int a,int b){return (i64)a*b%P;}
inline void muls(int&a,int b){a=mul(a,b);}
inline int fix(int x){return x+(x>>&P);}
int pw(int a,int n){
int v=;
for(;n;n>>=,muls(a,a))if(n&)muls(v,a);
return v;
}
void exgcd(int a,int b,int&x,int&y){
if(!b){x=,y=;return;}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int inv(int a,int b){
int x,y;
exgcd(a,b,x,y);
return (x%b+b)%b;
}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int solve(int a,int b,int c,int tp){
if(!a)return b?-:-tp;
int g=gcd(a,c);
if(b%g)return -;
a/=g,b/=g,c/=g;
i64 t=(i64)b*inv(a,c)%c;
if(!t)t=c;
if(t%!=tp)t+=c;
return t%!=tp?-:t;
}
int h[][];
int&at(int x){
int w=x&;
while(h[w][]){
if(h[w][]==x)return h[w][];
w=(w+)&;
}
h[w][]=x;
return h[w][];
}
void pre(){
int v=;
for(int i=;i<B;++i){
at(v)=i+;
muls(v,g);
}
}
int log(int x){
int t=pw(g,P--B);
for(int i=;;i+=B){
int y=at(x);
if(y)return y-+i;
muls(x,t);
}
}
int sqrt(int x){
int t=log(x);
return t&?-:pw(g,t/);
}
int ans=-;
void upd(int v){
if(~v&&(v<ans||ans==-))ans=v;
}
void cal(int x,int tp){
upd(solve(lr1,log(x),P-,tp));
upd(solve(lr2,log(fix(-x)),P-,tp));
}
int main(){
pre();
int v;
scanf("%d",&v);
if(!v)return puts("-1"),;
muls(v,sqrt5);
int v2=mul(v,v);
int s1=sqrt(fix(v2-)),s2=sqrt(fix(v2+-P));
if(~s1){
cal(mul(fix(v+s1-P),I2),);
cal(mul(fix(v-s1),I2),);
}
if(~s2){
cal(mul(fix(v+s2-P),I2),);
cal(mul(fix(v-s2),I2),);
}
return printf("%d\n",ans),;
}
bzoj5104: Fib数列的更多相关文章
- BZOJ5104 Fib数列(二次剩余+BSGS)
5在1e9+9下有二次剩余,那么fib的通项公式就有用了. 已知Fn,求n.注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(- ...
- BZOJ5104 Fib数列 二次剩余、BSGS
传送门 发现只有通项公式可以解决考虑通项公式 \(F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^ ...
- bzoj5104 Fib数列(BSGS+二次剩余)
快AFO了才第一次写二次剩余的题…… 显然应该将Fn写成通项公式(具体是什么写起来不方便而且大家也都知道),设t=((1+√5)/2)n,T=√5N,然后可以得到t-(-1)t/t=√5N,两边同时乘 ...
- 【BZOJ5104】Fib数列(BSGS,二次剩余)
[BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...
- FIB数列
斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...
- 动态规划之Fib数列类问题应用
一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原 ...
- UVaLive 3357 Pinary (Fib数列+递归)
题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...
- 【bzoj5118】Fib数列2 费马小定理+矩阵乘法
题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...
- HDU3977 Evil teacher 求fib数列模p的最小循环节
In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibona ...
随机推荐
- 【原创】Aduino小车玩法全记录
本来打算用一周时间好好研究下基于Arduino开发板的小车实验,结果实际上两天就完成了小车可玩的各种功能,包括完成特定动作组合,黑线循迹,(带后退)红外避障和(带舵机)超声波避障,超声波测距,红外遥控 ...
- postman的安装和使用
在后端开发的过程中,没有前端代码可以配合测试已完成的代码是否有问题,这个时候就需要postman来帮忙解决.对于后端人员来说,postman是很好的测试工具,下面具体讲下怎么安装postman,本次安 ...
- servlet之servlet容器(一)
1.servlet容器 ·servlet容器为javaweb应用提供运行时环境,负责管理servlet和jsp的生命周期以及管理它们的共享数据 ·servlet容器中的文件目录结构 ·tomcat是一 ...
- ChIP-seq 核心分析 下游分析
http://icb.med.cornell.edu/wiki/index.php/Elementolab/ChIPseeqer_Tutorial [怪毛匠子 整理] ChIP-seq[核心分析 下游 ...
- WEB学习笔记14-HTML5新特性的使用
(1)定义文档类型声明 <!DOCTYPE html> (2)定义页面编码 <!—HTML 4.01中定义的设置页面编码的方式--> <meta http-equiv=& ...
- npm install详解
package.json中dependencies和devDependencies的部分都会被安装,区别在于前者用于生产环境,后者用于开发环境-g 表示全局安装,通常用于安装脚手架等工具–save(- ...
- 20155219付颖卓 《网络对抗技术》 Exp9 Web安全基础
实验后回答问题 1.SQL注入攻击原理,如何防御 ·SQL攻击的原理很简单,就是在用户名输入框里输入SQL语句,来欺骗数据库服务器进行恶意操作 ·防御可以从以下几个方面下手: (1)在web网页设计的 ...
- 查看那些进程使用了swap
https://blog.csdn.net/xiangliangyu/article/details/8213127$ sudo pacman -S iotop https://blog.longwi ...
- linux安装mysql后root无法登录 sql 无法登录
linux安装mysql后root无法登录 问题:[root@localhost mysql]# mysql -u root -pEnter password: ERROR 1045 (28000): ...
- [工作积累] D3D10+ 中 Pixel Shader 的input semantic和参数顺序
由于semantic的使用,我们有理由相信 vertex shader的output 和 pixel shader的input是按照semantic来匹配的,而跟传入顺序无关.印象dx9时代是这样. ...