HBase Rowkey 设计指南
为什么Rowkey这么重要
RowKey 到底是什么
我们常说看一张 HBase 表设计的好不好,就看它的 RowKey 设计的好不好。可见 RowKey 在 HBase 中的地位。
那么 RowKey 到底是什么?RowKey 的特点如下:
- 类似于 MySQL、Oracle中的主键,用于标示唯一的行;
- 完全是由用户指定的一串不重复的字符串;
- HBase 中的数据永远是根据 Rowkey 的字典排序来排序的。
RowKey的作用
- 读写数据时通过 RowKey 找到对应的 Region;
- MemStore 中的数据按 RowKey 字典顺序排序;
- HFile 中的数据按 RowKey 字典顺序排序。
Rowkey对查询的影响
如果我们的 RowKey 设计为 uid+phone+name,那么这种设计可以很好的支持以下的场景:
- uid = 111 AND phone = 123 AND name = iteblog
- uid = 111 AND phone = 123
- uid = 111 AND phone = 12?
- uid = 111
难以支持的场景:
- phone = 123 AND name = iteblog
- phone = 123
- name = iteblog
Rowkey对Region划分影响
HBase 表的数据是按照 Rowkey 来分散到不同 Region,不合理的 Rowkey 设计会导致热点问题。
热点问题是大量的 Client 直接访问集群的一个或极少数个节点,而集群中的其他节点却处于相对空闲状态。
如上图,Region1 上的数据是 Region 2 的5倍,这样会导致 Region1 的访问频率比较高,进而影响这个 Region 所在机器的其他 Region。
RowKey设计技巧
我们如何避免上面说到的热点问题呢?这就是这章节谈到的三种方法。
避免热点的方法 - Salting
这里的加盐不是密码学中的加盐,而是在rowkey
的前面增加随机数。具体就是给 rowkey 分配一个随机前缀 以使得它和之前排序不同。
分配的前缀种类数量应该和你想使数据分散到不同的
region 的数量一致。 如果你有一些 热点 rowkey 反复出现在其他分布均匀的 rwokey
中,加盐是很有用的。
考虑下面的例子:它将写请求分散到多个 RegionServers,但是对读造成了一些负面影响。
假如你有下列 rowkey,你表中每一个 region 对应字母表中每一个字母。
以 'a' 开头是同一个region, 'b'开头的是同一个region。
在表中,所有以 'f'开头的都在同一个 region, 它们的 rowkey 像下面这样:
foo0001 foo0002 foo0003 foo0004 |
现在,假如你需要将上面这个 region 分散到 4个 region。你可以用4个不同的盐:'a', 'b', 'c', 'd'.
在这个方案下,每一个字母前缀都会在不同的 region 中。加盐之后,你有了下面的 rowkey:
a-foo0003 b-foo0001 c-foo0004 d-foo0002 |
所以,你可以向4个不同的 region 写。
理论上说,如果这四个 Region 存放在不同的机器上,经过加盐之后你将拥有之前4倍的吞吐量。
现在,如果再增加一行,它将随机分配a,b,c,d中的一个作为前缀,并以一个现有行作为尾部结束:
a-foo0003 b-foo0001 c-foo0003 c-foo0004 d-foo0002 |
因为分配是随机的,所以如果你想要以字典序取回数据,你需要做更多工作。
加盐这种方式增加了写时的吞吐量,但是当读时有了额外代价。
避免热点的方法 - Hashing
Hashing 的原理是计算 RowKey 的 hash 值,然后取 hash 的部分字符串和原来的 RowKey 进行拼接。
这里说的 hash 包含 MD5、sha1、sha256或sha512等算法。
比如我们有如下的 RowKey:
foo0001 foo0002 foo0003 foo0004 |
我们使用 md5 计算这些 RowKey 的 hash 值,然后取前 6 位和原来的 RowKey 拼接得到新的 RowKey:
95f18cfoo0001 6ccc20foo0002 b61d00foo0003 1a7475foo0004 |
优缺点:可以一定程度打散整个数据集,但是不利于 Scan;
比如我们使用 md5 算法,来计算Rowkey的md5值,然后截取前几位的字符串。subString(MD5(设备ID), 0, x) + 设备ID,其中x一般取5或6。
避免热点的方法 - Reversing
Reversing 的原理是反转一段固定长度或者全部的键。
比如我们有以下 URL ,并作为 RowKey:
flink.iteblog.com www.iteblog.com carbondata.iteblog.com def.iteblog.com |
这些 URL 其实属于同一个域名,但是由于前面不一样,导致数据不在一起存放。我们可以对其进行反转,如下:
moc.golbeti.knilf moc.golbeti.www moc.golbeti.atadnobrac moc.golbeti.fed |
经过这个之后,这些 URL 的数据就可以放一起了。
RowKey的长度
RowKey 可以是任意的字符串,最大长度64KB(因为 Rowlength 占2字节)。
建议越短越好,原因如下:
- 数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
- MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率;
- 目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。
RowKey 设计案例剖析
交易类表 Rowkey 设计
- 查询某个卖家某段时间内的交易记录
sellerId + timestamp + orderId - 查询某个买家某段时间内的交易记录
buyerId + timestamp +orderId - 根据订单号查询
orderNo - 如果某个商家卖了很多商品,可以如下设计 Rowkey 实现快速搜索
salt + sellerId + timestamp 其中,salt 是随机数。
可以支持的场景:- 全表 Scan
- 按照 sellerId 查询
- 按照 sellerId + timestamp 查询
金融风控 Rowkey 设计
查询某个用户的用户画像数据
- prefix + uid
- prefix + idcard
- prefix + tele
其中 prefix = substr(md5(uid),0 ,x), x 取 5-6。uid、idcard以及 tele 分别表示用户唯一标识符、身份证、手机号码。
车联网 Rowkey 设计
- 查询某辆车在某个时间范围的交易记录
carId + timestamp - 某批次的车太多,造成热点
prefix + carId + timestamp 其中 prefix = substr(md5(uid),0 ,x)
查询最近的数据
查询用户最新的操作记录或者查询用户某段时间的操作记录,RowKey 设计如下:
uid + Long.Max_Value - timestamp
支持的场景
- 查询用户最新的操作记录
Scan [uid] startRow [uid][000000000000] stopRow [uid][Long.Max_Value - timestamp] - 查询用户某段时间的操作记录
Scan [uid] startRow [uid][Long.Max_Value – startTime] stopRow [uid][Long.Max_Value - endTime]
HBase Rowkey 设计指南的更多相关文章
- Hbase Rowkey设计
转自:http://www.bcmeng.com/hbase-rowkey/ 建立Schema Hbase 模式建立或更新可以通过 Hbase shell 工具或者使用Hbase Java API 中 ...
- Hbase rowkey设计+布隆过滤器+STORE FILE & HFILE结构
Rowkey设计 Rowkey设计原则 Rowkey设计应遵循以下原则: 1.Rowkey的唯一原则 必须在设计上保证其唯一性.由于在HBase中数据存储是Key-Value形式,若HBase中同一表 ...
- Hbase rowkey设计一
转自 http://blog.csdn.net/lifuxiangcaohui/article/details/40621067 hbase所谓的三维有序存储的三维是指:rowkey(行主键),col ...
- HBase总结(十八)Hbase rowkey设计一
hbase所谓的三维有序存储的三维是指:rowkey(行主键),column key(columnFamily+qualifier),timestamp(时间戳)三部分组成的三维有序存储. 1.row ...
- hbase rowkey 设计
HBase中的rowkey是按字典顺序排序的,通过rowkey查询可以对千万级的数据实现毫秒级响应.然而,如果rowkey设计不合理的话经常会出现一个很普遍的问题----热点.当大量client的请求 ...
- Hbase Rowkey设计原则
Hbase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这三个维度可以对HBase中的数据进行快速定位 ...
- hbase rowkey设计的注意事项
充分利用有序性 1.1 如果要scan操作,且不是很频繁,可以利用rowkey的有序性将需要一起扫描的数据放到一起.例如直接用时间戳.这样就可以按时间scan了.这个只要是简单的全表扫描都行. 1.2 ...
- HBase的rowkey设计(含实例)
转自:http://www.aboutyun.com/thread-7119-1-1.html 对于任何系统的数据设计,我们都想提高性能,达到资源最大化利用,那么对于hbase我们产生如下问题: 1. ...
- Hbase 学习(七) rowkey设计
一直以来对rowkey的设计都比较迷茫,<hbase权威指南>倒是给出了个还算靠谱的例子. 下面这个例子有点儿像帖子表结构,它的rowkey设计是这样的,可以简单的理解为,什么人在什么时间 ...
随机推荐
- 2016年,总结篇 续 如何从 JQ 转到 VueJS 开发(一)
接着 2016 年的总结,我们来看看 2016年 国内最火且没有之一的前端MVVM 框架 VueJs 虽然 到写文章的这个时间点,VueJs已经发布了 2.1.x 了, 但是对于很多 Vuejs 的初 ...
- RS232串口的Windows编程纪要
再次是一篇入门文,各路神仙退散. 直接进入主题,又不是历史课,关于RS232那些前世今生的故事就不摆了. 硬件链接 首先以9针小口为例(大口应当只能去博物馆看了吧)看一下管脚排布,其实RS232本身没 ...
- TypeScript: type alias 与 interface
官方文档中有关于两者对比的信息,隐藏在 TypeScript Handbook 中,见 Interfaces vs. Type Aliases 部分. 但因为这一部分很久没更新了,所以其中描述的内容不 ...
- SpringBoot入门教程(十二)DevTools热部署
devtools模块,是为开发者服务的一个模块.主要的功能就是代码修改后一般在5秒之内就会自动重新加载至服务器,相当于restart成功.与JRebel不同的是,JRebel是一款商业插件,devto ...
- 线程安全(上)--彻底搞懂volatile关键字
对于volatile这个关键字,相信很多朋友都听说过,甚至使用过,这个关键字虽然字面上理解起来比较简单,但是要用好起来却不是一件容易的事.这篇文章将从多个方面来讲解volatile,让你对它更加理解. ...
- 在Java中使用redisTemplate操作缓存
背景 在最近的项目中,有一个需求是对一个很大的数据库进行查询,数据量大概在几千万条.但同时对查询速度的要求也比较高. 这个数据库之前在没有使用Presto的情况下,使用的是Hive,使用Hive进行一 ...
- [二] JavaIO之File详解 以及FileSystem WinNTFileSystem简介
File类 文件和目录路径名的抽象表示形式. 我们知道,对于不同的操作系统,文件路径的描述是不同的 比如 windows平台:用\ linux平台:用/ File是Java为了这一概念提供的抽象描 ...
- Smobiler 4.4 更新预告 Part 1(Smobiler能让你在Visual Studio上开发APP)
在4.4版本中,大家对产品优化的一些建议和意见进行了相应的优化和修复,同时,还新增了一些令人激动的功能和插件. 下面先为大家介绍4.4版本中Smobiler的优化和修复: 优化 1, PageView ...
- 第9章 使用客户端凭据保护API - Identity Server 4 中文文档(v1.0.0)
快速入门介绍了使用IdentityServer保护API的最基本方案. 我们将定义一个API和一个想要访问它的客户端. 客户端将通过提供ClientCredentials在IdentityServer ...
- pl/sql to_date
to_date 函数:TO_DATE( string1 [, format_mask] [, nls_language] ) 后面两个函数为可选 ,意思将字符串类型转换为时间类型 , 可以自定义时间格 ...