Pandas基本操作
pandas:数据分析
pandas是一个强大的Python数据分析的工具包。
pandas是基于NumPy构建的。
pandas的主要功能
具备对其功能的数据结构DataFrame、Series
集成时间序列功能
提供丰富的数学运算和操作
灵活处理缺失数据
安装方法:pip install pandas
引用方法:import pandas as pd(习惯给pandas起别名)
Series
Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成。
创建方式
pd.Series([4,7,-5,3])
pd.Series([4,7,-5,3],index=['a','b','c','d'])
pd.Series({'a':1, 'b':2})
pd.Series(0, index=['a','b','c','d’])
获取值数组和索引数组:values属性和index属性
Series比较像列表(数组)和字典的结合体。
Series特性
Series支持数组的特性:
从ndarray创建Series:Series(arr)
与标量运算:sr*2
两个Series运算:sr1+sr2
索引:sr[0], sr[[1,2,4]]
切片:sr[0:2](切片依然是视图形式)
通用函数:np.abs(sr)
布尔值过滤:sr[sr>0]
统计函数:mean() sum() cumsum()
Series支持字典的特性(标签):
从字典创建Series:Series(dic),
in运算:’a’ in sr、for x in sr
键索引:sr['a'], sr[['a', 'b', 'd']]
键切片:sr['a':'c']
其他函数:get('a', default=0)等
Series:整数索引
import pandas as pd
import numpy as np sr=pd.Series(np.arange(.))
sr[-] KeyError!
#pandas的数组对象在查找数据时,会以标签优先查找,也就是第一列表头信息,而不是我们认为的索引
如果索引是整数类型,则根据整数进行数据操作时总是面向标签的。
loc属性 以标签解释
iloc属性 以下标解释
Series数据对齐
pandas在运算时,会按索引进行对齐然后计算。如果存在不同的索引,则结果的索引是两个操作数索引的并集。
注意:NaN属于数字类型,表示不是数字类型的数字类型,通常称为缺失值
如何在两个Series对象相加时将缺失值设为0?
sr1.add(sr2, fill_value=0)
灵活的算术方法:add, sub, div, mul
Series缺失数据
缺失数据:使用NaN(Not a Number)来表示缺失数据。其值等于np.nan。内置的None值也会被当做NaN处理。
处理缺失数据的相关方法:
dropna() 过滤掉值为NaN的行
fillna() 填充缺失数据
isnull() 返回布尔数组,缺失值对应为True
notnull() 返回布尔数组,缺失值对应为False
pandas:DataFrame
DataFrame是一个表格型的数据结构,含有一组有序的列。
DataFrame可以被看做是由Series组成的字典,并且共用一个索引。
创建方式:
pd.DataFrame({'one':[1,2,3,4],'two':[4,3,2,1]})
pd.DataFrame({'one':pd.Series([1,2,3],index=['a','b','c']),
通常该类数据类型不需要我们手动去创建出来,而是通过读取表格文件来自动获取。最常用的获取和存储数据
csv文件读取与写入:
df.read_csv('filename.csv')
df.to_csv()
DataFrame查看数据
查看数据常用属性及方法:
index 获取索引
T 转置
columns 获取列索引
values 获取值数组
describe() 获取快速统计
DataFrame各列name属性:列名 rename(columns={})
DataFrame索引和切片
DataFrame有行索引和列索引。
DataFrame同样可以通过标签和位置两种方法进行索引和切片。
DataFrame使用索引切片:
方法1:两个中括号,先取列再取行。 df['A'][0]
方法2(推荐):使用loc/iloc属性,一个中括号,逗号隔开,先取行再取列。
loc属性:解释为标签
iloc属性:解释为下标
向DataFrame对象中写入值时只使用方法2
行/列索引部分可以是常规索引、切片、布尔值索引、花式索引任意搭配。(注意:两部分都是花式索引时结果可能与预料的不同)
DataFrame数据对齐与缺失数据
DataFrame对象在运算时,同样会进行数据对齐,行索引与列索引分别对齐。 结果的行索引与列索引分别为两个操作数的行索引与列索引的并集。
DataFrame处理缺失数据的相关方法:
dropna(axis=0,how='any',…)
fillna()
isnull()
notnull()
其他常用方法
pandas:时间对象处理
灵活处理时间对象:dateutil包 dateutil.parser.parse()
成组处理时间对象:pandas pd.to_datetime(['2001-01-01', '2002-02-02'])
产生时间对象数组:date_range start 开始时间 end 结束时间 periods 时间长度 freq 时间频率,默认为'D',可选H(our),W(eek),B(usiness),S(emi-)M(onth),(min)T(es), S(econd), A(year),…
pandas:时间序列
时间序列就是以时间对象为索引的Series或DataFrame。
datetime对象作为索引时是存储在DatetimeIndex对象中的。
时间序列特殊功能:
传入“年”或“年月”作为切片方式
传入日期范围作为切片方式
丰富的函数支持:resample(), strftime(), ……
批量转换为datetime对象:to_pydatetime()
pandas:写入到文件
Pandas基本操作的更多相关文章
- Python数据分析库pandas基本操作
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...
- pandas 基本操作
1. 一维数据结构Series a. 概念:Series 是pandas 的一维数据结构,有重要的两个属性 index 和values b. 初始化: 可以通过 python 的 Lis ...
- pandas基本操作2
1.axes返回标签列表 import pandas as pd import numpy as np dates = pd.date_range(', periods=8) df = pd.Data ...
- 2019-03-25 Python Pandas 基本操作
新建表 data1 = { "name": ["Tom", "Bob", "Mary", "James&quo ...
- 数据分析之pandas教程-----概念篇
目录 1 pandas基本概念 1.1 pandas数据结构剖析 1.1.1 Series 1.1.2 DataFrame 1.1.3 索引 1.1.4 pandas基本操作 1.1.4. ...
- Python模块简介及安装 [numpy,pandas,matplotlib,scipy,statsmodels,Gensim,sklearn,keras]
https://pan.baidu.com/s/1bpVv3Ef 67bd 模块安装文件下载地址 pip install "numpy-1.12.0b+mkl-cp35- ...
- pandas 按照某一列进行排序
pandas排序的方法有很多,sort_values表示根据某一列排序 pd.sort_values("xxx",inplace=True) 表示pd按照xxx这个字段排序,inp ...
- 基于pandas进行数据预处理
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846 ...
- Python的工具包[1] -> pandas数据预处理 -> pandas 库及使用总结
pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series ...
随机推荐
- [java]final关键字的几种用法
在java的关键字中,static和final是两个我们必须掌握的关键字.不同于其他关键字,他们都有多种用法,而且在一定环境下使用,可以提高程序的运行性能,优化程序的结构.下面我们来了解一下final ...
- MVC架构中的Repository模式 个人理解
关于MVC架构中的Repository模式 个人理解:Repository是一个独立的层,介于领域层与数据映射层(数据访问层)之间.它的存在让领域层感觉不到数据访问层的存在,它提供一个类似集合的接 ...
- 读书笔记之第五回深入浅出关键字---把new说透
第五回深入浅出关键字---把new说透 ------你必须知道的.net读书笔记 new一个class时,new完成了以下两个方面的内容:一是调用newobj命令来为实例在托管堆中分配内存:二是调用 ...
- spring mvc 启动过程及源码分析
由于公司开源框架选用的spring+spring mvc + mybatis.使用这些框架,网上都有现成的案例:需要那些配置文件.每种类型的配置文件的节点该如何书写等等.如果只是需要项目能够跑起来,只 ...
- 2013年第四届蓝桥杯javaB组 试题 答案 解析
1.世纪末的星期 曾有邪教称1999年12月31日是世界末日.当然该谣言已经不攻自破. 还有人称今后的某个世纪末的12月31日,如果是星期一则会.... 有趣的是,任何一个世纪末的年份的12月31日都 ...
- FaaS技术框架
FaaS介绍 微服务(MicroService)是以专注于单一服务/功能的小型单元块为基础,利用模块化的方式组合成复杂的大型应用服务. FaaS是Function as a Service的缩写,可以 ...
- 程序员50题(JS版本)(一)
程序1:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? for(var i=1,sum=0;i<=4;i++){ for(var j=1;j<=4;j++){ ...
- Chrome下面查看placeholder的样式
在Chrome下面默认是看不到placeholder的样式的 我们可以通过在当前页面的开发者工具里面的settings 勾选下面这个选项,就可以看到了 下面是效果
- ps -ef |grep java
一.ps -ef |grep java 查看包含“java”的所有进程 二.涉及命令详解 ps命令将某个进程显示出来(是LINUX下最常用的也是非常强大的进程查看命令) grep命令是查找(是一种强大 ...
- vmware 开启VM的硬件cpu虚拟化功能
物理机的cpu硬件虚拟化功能,通过开启bios中的设置,而vmware中创建的虚拟机也可以开启该特性,如下. 这样的话,就直接可以基于这些VM安装openstack计算节点.控制节点.网络节点了.