Python 计算当真因子个数为偶数个时为幸运数,计算区间内幸运数之和
晚饭后朋友发来个问题,正好无事做,动手写了一下
若一个正整数有偶数个不同的真因子,则称该数为幸运数。如4含有2个真因子为 1 和 2 。故4是幸运数。求【2,100】之间的全部幸运数之和。
常规思路
被除数一直除以 1 2 3 ... 直到除以它自身,不过这种比较消耗资源(周知python简洁但效率不高)
getf.py
- def get_Factor(x):
- """
- n 需要求真因数的数(被除数) x
- x 除数 y
- rem 余数
- quo 商
- """
- if x == 0: return [0]
- if x == 1: return [1]
- f_list = []
- for y in range(1,x):#定义y是除数
- rem = x % y
- quo = x // y
- if rem == 0:# 如果x可以被y整除
- if y not in f_list:
- f_list.append(y)
- if quo not in f_list:
- f_list.append(quo)
- continue
- continue
- continue
- f_list.sort(reverse = False)
- f_list.pop()
- #是一个一个加进去,排个序后删除本身
- return x , f_list
- def get_Luckynum(a, b):
- Luckynum = []
- for i in range(a,b+1):
- i,f_list = get_Factor(i)
- if len(f_list) % 2 == 0:
- Luckynum.append(i)
- # print(i,"的真因数:",f_list,"个数为",len(f_list),"个,■■是■■")
- # else:
- # print(i,"的真因数为:",f_list,"个数为",len(f_list),"个,♦♦不是♦♦")
- return Luckynum, sum(Luckynum)
main.py
- # -*- coding: utf-8 -*-
- """
- Created on Fri Apr 19 19:32:33 2019
- @author: Administrator
- """
- import getf
- a = int(input("请输入最小值:"))
- b = int(input("请输入最大值:"))
- Luckynum, sum_Luckynum = getf.get_Luckynum(a,b)
- print('区间 [{0},{1}] 的幸运数包含:{2}'.format(a, b, Luckynum))
- print('它们的总和是:{0}'.format(sum_Luckynum))
另一个思路:被除数区间的定义
稍微思考一下
a*b = c a变大b就会变小 a变小b就会变大
假设a永远是最小 b永远是最大的哪个
那么 a 和 b 的它们最大值,肯定是 √c
该思路就是让 c 求商的时候,不用像常规思路一般一直除到本身(如65,要除以1..2..3..4......65 )资源消耗大,效率低下
而是一直除到 √c (如65,要除以1..2..3..4...一直到√65 就停止遍历)
当然 遍历到 √c 的时候 a = b 这个就在加个判断就好了,不允许重复
如下
- import math
- def new_get_Factor(x):
- if x == 0: return [0]
- if x == 1: return [1]
- f_list = []
- for y in range(1,int(math.sqrt(x)) + 1):
- #(1,根号x+1)确保能够遍历到根号x
- rem = x % y
- quo = x // y
- if rem == 0:
- f_list.append(y)
- if y != quo:
- f_list.append(quo)
- continue
- continue
- f_list.sort(reverse = False)
- f_list.pop()
- return x,f_list
Python 计算当真因子个数为偶数个时为幸运数,计算区间内幸运数之和的更多相关文章
- SPOJ DQUERY 求区间内不同数的个数 主席树
这题跟HDU3333差不多吧. 离线的做法很简单,不再说了 以前做过. 主席树的做法就比较暴力了.. 什么是主席树呢.. 其实是某种称号. 在该题中的体现是可持久化的线段树. 对于一个数 如果以前没出 ...
- SPOJ 3267 D-query(离散化+主席树求区间内不同数的个数)
DQUERY - D-query #sorting #tree English Vietnamese Given a sequence of n numbers a1, a2, ..., an and ...
- 【树状数组】区间出现偶数次数的异或和(区间不同数的异或和)@ codeforce 703 D
[树状数组]区间出现偶数次数的异或和(区间不同数的异或和)@ codeforce 703 D PROBLEM 题目描述 初始给定n个卡片拍成一排,其中第i个卡片上的数为x[i]. 有q个询问,每次询问 ...
- LightOj1028 - Trailing Zeroes (I)---求因子个数
题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...
- POJ 2992 求组合数的因子个数
求C(n,k)的因子个数 C(n,k) = (n*(n-1)*...*(n-k+1))/(1*2*...*k) = p1^k1 * p2^k2 * ... * pt^kt 这里只要计算出分子中素数因子 ...
- Divisors_组合数因子个数
Description Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- ...
- POJ 2992 Divisors (求因子个数)
题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...
- Factors of Factorial AtCoder - 2286 (N的阶乘的因子个数)(数论)
Problem Statement You are given an integer N. Find the number of the positive divisors of N!, modulo ...
- 第13届景驰-埃森哲杯广东工业大学ACM程序设计大赛-等式(求$N^2$的因子个数)
一.题目链接 https://www.nowcoder.com/acm/contest/90/F 二.题面 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言655 ...
随机推荐
- Caused by: java.util.concurrent.RejectedExecutionException: Thread pool is EXHAUSTED! Thread Name:
异常引发的问题: 线程模型 如果事件处理的逻辑能迅速完成,并且不会发起新的 IO 请求,⽐如只是在内存中记个标识,则直接在 IO 线程上处理更快,因为减少了线程池调度. 但如果事件处理逻辑较慢,或者需 ...
- JS对象2
1.Date对象 创建对象 //方法1:不指定参数 var nowd1=new Date(); alert(nowd1.toLocaleString( )); //方法2:参数为日期字符串 var n ...
- HTML入门6
这篇将简单会编写网页整体网站架构,通过HTML来表示网站结构. 标题<header>,通常顶部有个大标题或图标,是网站的主要常见信息,存在于每个网页 导航<nav>,通常包含菜 ...
- Python 面试中可能会被问到的30个问题
第一家公司问的题目 1 简述解释型和编译型编程语言? 解释型语言编写的程序不需要编译,在执行的时候,专门有一个解释器能够将VB语言翻译成机器语言,每个语句都是执行的时候才翻译.这样解释型语言每执行一次 ...
- (转)JDK 1.8 预览版Lambda语法分析
一.lambda含义 lambda表示数学符号“λ”,计算机领域中λ代表“λ演算”,表达了计算机中最基本的概念:“调用”和“置换”.在很多动态语言和C#中都有相应的lambda语法,这类语法都 ...
- Multi-Projector Based Display Code ---- FAQ
Frequently Asked Question How do I know that my camera has a proper lens? Answer: If you can see exa ...
- Express全系列教程之(八):session的基本使用
一.关于session session是另一种记录客户状态的机制,与cookie保存在客户端浏览器不同,session保存在服务器当中:当客户端访问服务器时,服务器会生成一个session对象,对象中 ...
- vue加载流程
首先加载main.js,main.js中new一个vue实例,这个实例中会有一个id="app"映射到app.vue,启动时候首页映射到index.html,其中<div i ...
- android上的bin/sbin/xbin等各种目录
1. /system是用于存储 由AOSP构建生成的 不可变组件的 主要Android目录.这包括本机二进制文件,本机库,框架包和存储主要的应用程序.它通常是从根文件系统的单独映像中以只读方式挂载的, ...
- HBuilder打包vue项目app后空白,并请求不到数据
(解决空白问题)在打包之前一定要修改 config 目录下的 index.js 文件中的 bulid 模块打包配置项,否则会出现空白,如图 修改前 assetsPublicPath= '/',. ...