题意:给定树,有点权。求一条路径使得最小点权 * 总点数最大。只需输出这个最大值。5w。

解:树上路径问题,点分治。

考虑合并两个子树的时候,答案的形式是val1 * (d1 + d2),当1是新插入的节点的时候,只需在val比它大的点中选出一个最大的d2,这树状数组就可以做到。

当2是新插入的节点时候,好像需要凸包了?但是我们完全不虚啊,因为我们倒序枚举子树就能让2在1之前插入。

于是正反枚举两次子树,拿树状数组维护一下后缀最大值就行了。

复杂度O(nlog2n)

 /**
* There is no end though there is a start in space. ---Infinity.
* It has own power, it ruins, and it goes though there is a start also in the star. ---Finite.
* Only the person who was wisdom can read the most foolish one from the history.
* The fish that lives in the sea doesn't know the world in the land.
* It also ruins and goes if they have wisdom.
* It is funnier that man exceeds the speed of light than fish start living in the land.
* It can be said that this is an final ultimatum from the god to the people who can fight.
*
* Steins;Gate
*/ #include <bits/stdc++.h> #define forson(x, i) for(int i = e[x]; i; i = edge[i].nex) typedef long long LL;
const int N = , INF = 0x3f3f3f3f; struct Edge {
int nex, v;
}edge[N << ], edge2[N << ]; int tp, tp2; int e[N], n, siz[N], _n, root, small, e2[N], xx, d[N], Val[N];
LL val[N], X[N], ans;
bool del[N]; inline void add(int x, int y) {
tp++;
edge[tp].v = y;
edge[tp].nex = e[x];
e[x] = tp;
return;
} inline void add2(int x, int y) {
tp2++;
edge2[tp2].v = y;
edge2[tp2].nex = e2[x];
e2[x] = tp2;
return;
} namespace ta {
int ta[N];
inline void add(int x, int v) {
x = xx + - x;
for(int i = x; i <= xx; i += i & (-i)) {
ta[i] = std::max(ta[i], v);
}
return;
}
inline void del(int x) {
x = xx + - x;
for(int i = x; i <= xx; i += i & (-i)) {
ta[i] = -INF;
}
return;
}
inline int getMax(int x) {
x = xx + - x;
int ans = -INF;
for(int i = x; i; i -= i & (-i)) {
ans = std::max(ans, ta[i]);
}
return ans;
}
} void getroot(int x, int f) {
siz[x] = ;
int large = ;
forson(x, i) {
int y = edge[i].v;
if(y == f || del[y]) continue;
getroot(y, x);
siz[x] += siz[y];
if(siz[y] > large) {
large = siz[y];
}
}
if(_n - siz[x] > large) {
large = _n - siz[x];
}
if(small > large) {
small = large;
root = x;
}
return;
} void DFS_1(int x, int f) {
siz[x] = ;
d[x] = d[f] + ;
Val[x] = std::min(Val[f], (int)val[x]);
ans = std::max(ans, X[Val[x]] * (d[x] + ta::getMax(Val[x])));
forson(x, i) {
int y = edge[i].v;
if(del[y] || y == f) continue;
DFS_1(y, x);
siz[x] += siz[y];
}
return;
} void DFS_2(int x, int f) {
ta::add(Val[x], d[x] + );
forson(x, i) {
int y = edge[i].v;
if(y == f || del[y]) continue;
DFS_2(y, x);
}
return;
} void DFS_3(int x, int f) {
ta::del(Val[x]);
forson(x, i) {
int y = edge[i].v;
if(del[y] || y == f) {
continue;
}
DFS_3(y, x);
}
return;
} void poi_div(int x) {
small = INF;
getroot(x, );
x = root; d[x] = ;
Val[x] = val[x];
ta::add(Val[x], );
forson(x, i) {
int y = edge[i].v;
if(del[y]) continue;
DFS_1(y, x);
DFS_2(y, x);
}
DFS_3(x, );
// ---------
for(int i = e2[x]; i; i = edge2[i].nex) {
int y = edge2[i].v;
if(del[y]) continue;
DFS_1(y, x);
DFS_2(y, x);
}
ans = std::max(ans, X[val[x]] * ta::getMax(val[x]));
DFS_3(x, ); del[x] = ;
forson(x, i) {
int y = edge[i].v;
if(del[y]) continue;
_n = siz[y];
poi_div(y);
}
return;
} int main() { scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%lld", &val[i]);
X[i] = val[i];
}
std::sort(X + , X + n + );
xx = std::unique(X + , X + n + ) - X - ;
for(int i = ; i <= n; i++) {
val[i] = std::lower_bound(X + , X + xx + , val[i]) - X;
}
ans = X[xx];
for(int i = , x, y; i < n; i++) {
scanf("%d%d", &x, &y);
add(x, y); add(y, x);
}
for(int x = ; x <= n; x++) {
forson(x, i) {
add2(x, edge[i].v);
}
} poi_div(); printf("%lld\n", ans);
return ;
}

AC代码

题外话:感觉能树形DP,但是要线段树合并 + 凸包合并,虚的一批...

还发现了一个O(nlogn)的做法,只需多叉转二叉然后O(n) - O(1)lca即可实现,瓶颈在于排序...

然而这题是边分治模板题...

BZOJ2870 最长道路的更多相关文章

  1. BZOJ2870—最长道路tree

    最长道路tree Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样.每个路口都有很多车辆来往,所以每个路口i都 ...

  2. BZOJ2870: 最长道路tree

    题解: 子树分治的做法可以戳这里:http://blog.csdn.net/iamzky/article/details/41120733 可是码量... 这里介绍另一种好写又快的方法. 我们还是一颗 ...

  3. bzoj2870最长道路tree——边分治

    简化版描述: 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数.   有几个不同的做法: 1.sort+并查集+树的直径.边从大到小加入 ...

  4. BZOJ2870 最长道路tree(并查集+LCA)

    题意 (n<=50000) 题解 #include<iostream> #include<cstring> #include<cstdio> #include ...

  5. [BZOJ2870]最长道路tree:点分治

    算法一:点分治+线段树 分析 说是线段树,但是其实要写树状数组卡常. 代码 #include <bits/stdc++.h> #define rin(i,a,b) for(register ...

  6. 【BZOJ2870】最长道路(边分治)

    [BZOJ2870]最长道路(边分治) 题面 BZOJ权限题 Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样 ...

  7. 【BZOJ2870】最长道路tree 点分治+树状数组

    [BZOJ2870]最长道路tree Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样.每个路口都有很多车辆来 ...

  8. 【bzoj2870】最长道路tree 树的直径+并查集

    题目描述 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 输入 第一行N 第二行N个数分别表示1~N的点权v[i] 接下来N-1行每 ...

  9. 【BZOJ2870】最长道路

    权限题 题意 给出一棵树,点有点权,找到树上的一条路径使得路径上点的个数和其中点权最小的点的点权之积最大,输出最大值. Sol 边分治板子题啦. 边分治后对于分出来的两棵子树 , 按到左右根的最小点权 ...

随机推荐

  1. restful api与传统api的区别(方式及语法)

    示例:一个状态数据操作接口 传统模式: api/getstate.aspx- 获取状态信息api/updatestate.aspx - 更新状态信息api/deletestate.aspx - 删除该 ...

  2. 【重新发布,代码开源】FPGA设计千兆以太网MAC(1)——通过MDIO接口配置与检测PHY芯片

    原创博客,转载请注明出处:[重新发布,代码开源]FPGA设计千兆以太网MAC(1)——通过MDIO接口配置与检测PHY芯片 - 没落骑士 - 博客园 https://www.cnblogs.com/m ...

  3. Session, Token, OAuth 鉴权那些事儿

    鉴权那些事 整体思路 无论什么样的服务, Web 服务总是不能绕开鉴权这个话题的, 通过有效的鉴权手段来保护网站数据, 来为特定用户提供服务. 整体来说, 有三种方式: Session-Cookie ...

  4. qt 打包发布 获取dll

    发布前,获取所有qt dll包命令 生成的程序运行正常之后,找到项目的生成目录,比如 项目源码路径: C:\QtPros\hellomw\它的项目生成目录是C:\QtPros\build-hellom ...

  5. raise

    raise 后边一般是更报错处理的,比如nameerror.先上代码 try: a='a0'+8 except: print('l') raise else: print('women') print ...

  6. 单元测试(qunit)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...

  7. android 实现点击edittext的“小眼睛”切换明密文

    android 实现点击edittext的“小眼睛”切换明密文    版权声明:本文为博主原创文章,未经博主允许不得转载.   很多时候,我们为了用户的隐私安全,需要在密码输入的时候,显示密文.为了更 ...

  8. [LeetCode]2. 两数相加

    题目链接:https://leetcode-cn.com/problems/add-two-numbers/ 题目描述: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 ...

  9. 基于 HTML5 的 WebGL 自定义 3D 摄像头监控模型

    前言 随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的同时,在监控系统中面临着严峻的现状问 ...

  10. HBase操作命令总结

    1,如何运行HBase 1,如何查找hbase的安装目录 whereis用来查找程序的安装目录.帮助文档等等,如下: whereis hbase 结果如下,目录下一级包含bin的就是hbase的安装目 ...