题目链接:

[十二省联考2019]异或粽子

求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间。

为了快速得到一个区间的异或和,将原序列做前缀异或和。

对于每个点作为右端点时,我们维护出与他异或起来最大的左端点并将这组信息用结构体存起来插入堆中。

那么最大值就是堆顶那组(假设右端点为$r$),但考虑到次大值可能出自同一个右端点,所以在弹出堆顶后还需要将以$r$为右端点的次大值插入堆中。

那么如何求出以$r$为右端点的最大值和次大值?

我们对序列每个数为一个版本建可持久化$trie$树,那么最大值就是对于$[1,r]$版本(第一个版本插入的数为$a[0]$)求与一个数异或的最大值。

至于次大值,可以记录求最大值时的版本区间(设为$[l,r]$)及最大值所在序列(或版本)的位置(设为$mid$),在弹出最大值那组信息的同时插入$[l,mid-1]$和$[mid+1,r]$两个区间,分别对这两个区间求最大值即可。

因为需要求具体位置,所以在插入时需要在当前版本插入的一条链的叶子节点记录插入数在原数组的下标,当查询$[l,r]$时,返回$r$版本对应叶子节点记录的信息即可。因为每个版本只插入一个数,所以每个叶子结点记录的就是对应权值的最后一个位置,也就可以保证$r$版本对应叶子节点记录的信息一定在$[l,r]$之间。

那么要求出前$k$大,只需要每次取出堆顶然后将堆顶查询区间分为两部分再插入堆中,重复$k$次即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int cnt;
int root[500010];
int n,k;
ll ans;
struct miku
{
int ls,rs,size,id;
}tr[20000010];
ll a[500010],x;
void updata(int &rt,int pre,int dep,ll val,int num)
{
rt=++cnt;
tr[rt].size=tr[pre].size+1;
tr[rt].ls=tr[pre].ls;
tr[rt].rs=tr[pre].rs;
if(dep==0)
{
tr[rt].id=num;
return ;
}
if(val&(1<<(dep-1)))
{
updata(tr[rt].rs,tr[pre].rs,dep-1,val,num);
}
else
{
updata(tr[rt].ls,tr[pre].ls,dep-1,val,num);
}
}
int query(int x,int y,int dep,ll val)
{
if(dep==0)
{
return tr[y].id;
}
if(val&(1<<(dep-1)))
{
if(tr[tr[y].ls].size-tr[tr[x].ls].size>0)
{
return query(tr[x].ls,tr[y].ls,dep-1,val);
}
else
{
return query(tr[x].rs,tr[y].rs,dep-1,val);
}
}
else
{
if(tr[tr[y].rs].size-tr[tr[x].rs].size>0)
{
return query(tr[x].rs,tr[y].rs,dep-1,val);
}
else
{
return query(tr[x].ls,tr[y].ls,dep-1,val);
}
}
}
struct lty
{
int l,r,mid,rt;
ll val;
lty(){}
lty(int L,int R,int RT)
{
l=L,r=R,rt=RT;
mid=query(root[l-1],root[r],32,a[rt]);
val=a[rt]^a[mid-1];
}
bool operator <(lty a)const
{
return val<a.val;
}
};
priority_queue<lty>q;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%lld",&x);
a[i]=a[i-1]^x;
}
for(int i=1;i<=n;i++)
{
updata(root[i],root[i-1],32,a[i-1],i);
}
for(int i=1;i<=n;i++)
{
q.push(lty(1,i,i));
}
while(k--&&!q.empty())
{
lty now=q.top();
q.pop();
ans+=now.val;
if(now.mid>now.l)
{
q.push(lty(now.l,now.mid-1,now.rt));
}
if(now.mid<now.r)
{
q.push(lty(now.mid+1,now.r,now.rt));
}
}
printf("%lld",ans);
}

还有一种解决方法是记录以$r$为右端点的区间已经取了前$k$大,每次取出堆顶将堆顶记录的$k$加一,查询第$k+1$大的异或区间再插入堆中。这样每组只需要存三个信息相对于上一种方法常数较小。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int cnt;
int root[500010];
int n,k;
ll ans;
struct miku
{
int ls,rs,size;
}tr[20000010];
ll a[500010],x;
void updata(int &rt,int pre,int dep,ll val)
{
rt=++cnt;
tr[rt].size=tr[pre].size+1;
tr[rt].ls=tr[pre].ls;
tr[rt].rs=tr[pre].rs;
if(dep==0)
{
return ;
}
if(val&(1<<(dep-1)))
{
updata(tr[rt].rs,tr[pre].rs,dep-1,val);
}
else
{
updata(tr[rt].ls,tr[pre].ls,dep-1,val);
}
}
ll query(int rt,int dep,ll val,int k)
{
if(dep==0)
{
return 0ll;
}
if(val&(1<<(dep-1)))
{
int res=tr[tr[rt].ls].size;
if(res>=k)
{
return query(tr[rt].ls,dep-1,val,k)+(1ll<<(dep-1));
}
else
{
return query(tr[rt].rs,dep-1,val,k-res);
}
}
else
{
int res=tr[tr[rt].rs].size;
if(res>=k)
{
return query(tr[rt].rs,dep-1,val,k)+(1ll<<(dep-1));
}
else
{
return query(tr[rt].ls,dep-1,val,k-res);
}
}
}
struct lty
{
int k,rt;
ll val;
lty(){}
lty(int K,int RT)
{
k=K,rt=RT;
val=query(root[rt],32,a[rt],k);
}
bool operator <(lty a)const
{
return val<a.val;
}
};
priority_queue<lty>q;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%lld",&x);
a[i]=a[i-1]^x;
}
for(int i=1;i<=n;i++)
{
updata(root[i],root[i-1],32,a[i-1]);
}
for(int i=1;i<=n;i++)
{
q.push(lty(1,i));
}
while(k--&&!q.empty())
{
lty now=q.top();
q.pop();
ans+=now.val;
q.push(lty(now.k+1,now.rt));
}
printf("%lld",ans);
}

[十二省联考2019]异或粽子——可持久化trie树+堆的更多相关文章

  1. 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)

    LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...

  2. [十二省联考2019] 异或粽子 - 可持久化Trie,堆

    求 \(n\) 元数列的 \(k\) 个不同的子区间使得各个子区间异或和之和最大. Solution (差点又看错题了) 做个前缀和,于是转化成求序列异或和最大的 \(k\) 个数对 建一棵可持久化 ...

  3. P5283 [十二省联考2019]异或粽子 可持久化01Trie+线段树

    $ \color{#0066ff}{ 题目描述 }$ 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 \(n\) 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 ...

  4. 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)

    [BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...

  5. [十二省联考2019]异或粽子 01trie

    [十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...

  6. 【简】题解 P5283 [十二省联考2019]异或粽子

    传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...

  7. 【洛谷5283】[十二省联考2019] 异或粽子(可持久化Trie树+堆)

    点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的 ...

  8. Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】

    联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...

  9. [十二省联考2019]异或粽子(堆+可持久化Trie)

    前置芝士:可持久化Trie & 堆 类似于超级钢琴,我们用堆维护一个四元组\((st, l, r, pos)\)表示以\(st\)为起点,终点在\([l, r]\)内,里面的最大值的位置为\( ...

随机推荐

  1. idea使用事项

    1.调用外部jar包 Run/Debug Configurations --- Tomcat Server --- Startup/connection --- Debug 添加“path”变量:** ...

  2. 转:从输入url到显示网页发生了什么

    在浏览器中输入url到显示网页主要包含两个部分: 网络通信和页面渲染 互联网内各网络设备间的通信都遵循TCP/IP协议,利用TCP/IP协议族进行网络通信时,会通过分层顺序与对方进行通信.分层由高到低 ...

  3. 【Vue 2.x】计算属性

    Vue对象,按照现在的学习进度,可以分为: 其中el代表作用的HTML元素: data代表el中的所有数据: methods代表el中所有元素上的事件: computed代表计算属性,用于计算data ...

  4. Linux系统性能分析工具 sar--系统活动情况报告

    1.结论: sar 命令是linux系统上,分析系统性能的常用工具,可以查看cpu.内存.磁盘IO.文件读写.系统调用, 2.sar会有一个定时任务,定期记录当前系统信息到  /var/log/sa/ ...

  5. iOS开发者学习Flutter

    Flutter for iOS 开发者 本文档适用那些希望将现有 iOS 经验应用于 Flutter 的开发者.如果你拥有 iOS 开发基础,那么你可以使用这篇文档开始学习 Flutter 的开发. ...

  6. LeetCode算法题-Set Mismatch(Java实现)

    这是悦乐书的第279次更新,第295篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第147题(顺位题号是645).集合S最初包含从1到n的数字. 但不幸的是,由于数据错误 ...

  7. Tomcat与Nginx服务器的配合使用及各自的区别

    Nginx常用做静态内容服务和反向代理服务器,以及页面前端高并发服务器.适合做负载均衡,直面外来请求转发给后面的应用服务(tomcat ,django什么的),Tomcat更多用来做做一个应用容器,让 ...

  8. Jenkins插件之显示构建时间

    1.进入jenkin插件管理器中,安装  Timestamper 插件 2.安装完成后,进入到构建任务里面,在 构建环境 中勾选  Add timestamps to the Console Outp ...

  9. H5页面长按导致app崩溃问题解决

    每天学习一点点 编程PDF电子书.视频教程免费下载:http://www.shitanlife.com/code 最近用H5页面做了个安卓的项目,但是在H5页面中长按文字内容,会导致APP崩溃掉... ...

  10. Stream02

    import 'package:flutter/material.dart';import 'dart:async';import 'dart:math'; void main()=>runAp ...