BZOJ3626[LNOI2014]LCA——树链剖分+线段树
题目描述
给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)
输入
第一行2个整数n q。
接下来n-1行,分别表示点1到点n-1的父节点编号。
接下来q行,每行3个整数l r z。
输出
输出q行,每行表示一个询问的答案。每个答案对201314取模输出
样例输入
0
0
1
1
1 4 3
1 4 2
样例输出
5
提示
共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。
两个点a,b的lca的深度就是dep[lca],如果暴力地写这道题就是对于每个x与[l,r]内所有数的lca都求一遍,但可以发现lca还有一种求法:对于i,x两点的lca,可以把i到根节点路径上所有的边权+1(刚开始都是零),只要再求x到根节点上的路径和就是lca的深度。那么对于[l,r]内所有的点和x的lca,只要把每个点到根的路径上边权都+1,然后再求x到根的路径和就好了。这个只要树链剖分加线段树就能维护,每次修改和查询在树上边跳边在线段树中操作就行了。但对于每次询问都要把线段树清空再重新标记,显然还是不行的,因此可以离线来做。我们发现求的东西具有可减性,即求[l,r]与x的lca深度和等于求[1,r]与x的lca深度和-[1,l-1]与x的lca深度和。因此每个询问可以拆成两部分,然后把所有查询排序,按节点标号顺序对到根路径上的边+1,每到一个点处理这个点处对应的查询。注意点的编号从零开始。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int x;
int l,r;
int n,m;
int tot;
int num;
int cnt;
int f[100010];
int d[100010];
int s[100010];
bool g[100010];
int a[1000010];
int to[100010];
ll sum[800010];
ll ans[100010];
int top[100010];
int son[100010];
int size[100010];
int head[100010];
int next[100010];
struct node
{
int x;
int l;
int id;
}q[200010];
bool cmp(node a,node b)
{
return a.l<b.l;
}
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x)
{
size[x]=1;
for(int i=head[x];i;i=next[i])
{
d[to[i]]=d[x]+1;
f[to[i]]=x;
dfs(to[i]);
size[x]+=size[to[i]];
if(size[to[i]]>size[son[x]])
{
son[x]=to[i];
}
}
}
void dfs2(int x,int tp)
{
s[x]=++num;
top[x]=tp;
if(son[x])
{
dfs2(son[x],tp);
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=son[x])
{
dfs2(to[i],to[i]);
}
}
}
void pushup(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void pushdown(int rt,int l,int r)
{
if(a[rt])
{
int mid=(l+r)>>1;
a[rt<<1]+=a[rt];
a[rt<<1|1]+=a[rt];
sum[rt<<1]+=1ll*a[rt]*(mid-l+1);
sum[rt<<1|1]+=1ll*a[rt]*(r-mid);
a[rt]=0;
}
}
void change(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
a[rt]++;
sum[rt]+=1ll*(r-l+1);
return ;
}
pushdown(rt,l,r);
int mid=(l+r)>>1;
if(L<=mid)
{
change(rt<<1,l,mid,L,R);
}
if(R>mid)
{
change(rt<<1|1,mid+1,r,L,R);
}
pushup(rt);
}
ll query(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
return sum[rt];
}
pushdown(rt,l,r);
int mid=(l+r)>>1;
ll res=0;
if(L<=mid)
{
res+=query(rt<<1,l,mid,L,R);
}
if(R>mid)
{
res+=query(rt<<1|1,mid+1,r,L,R);
}
return res;
}
void updata(int x)
{
while(top[x]!=1)
{
change(1,1,n,s[top[x]],s[x]);
x=f[top[x]];
}
change(1,1,n,1,s[x]);
}
ll downdata(int x)
{
ll res=0;
while(top[x]!=1)
{
res+=query(1,1,n,s[top[x]],s[x]);
x=f[top[x]];
}
res+=query(1,1,n,1,s[x]);
return res;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++)
{
scanf("%d",&x);
add(x+1,i+1);
}
dfs(1);
dfs2(1,1);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&l,&r,&x);
x++;
l++;
r++;
q[++cnt].l=l-1;
q[cnt].x=x;
q[cnt].id=i;
q[++cnt].l=r;
q[cnt].x=x;
q[cnt].id=i;
}
sort(q+1,q+1+cnt,cmp);
int now=1;
for(int i=0;i<=n;i++)
{
if(i!=0)
{
updata(i);
}
while(q[now].l==i&&now<=cnt)
{
if(g[q[now].id]==0)
{
ans[q[now].id]-=downdata(q[now].x);
g[q[now].id]=1;
}
else
{
ans[q[now].id]+=downdata(q[now].x);
}
now++;
}
}
for(int i=1;i<=m;i++)
{
printf("%lld\n",ans[i]%201314);
}
}
BZOJ3626[LNOI2014]LCA——树链剖分+线段树的更多相关文章
- 【bzoj3626】[LNOI2014]LCA 树链剖分+线段树
题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- bzoj2243[SDOI2011]染色 树链剖分+线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9012 Solved: 3375[Submit][Status ...
- BZOJ3862Little Devil I——树链剖分+线段树
题目大意: 给一棵树,每条边可能是黑色或白色(起始都是白色),有三种操作: 1.将u到v路径上所有边颜色翻转(黑->白,白->黑) 2.将只有一个点在u到v路径上的边颜色翻转 3.查询u到 ...
- BZOJ2325[ZJOI2011]道馆之战——树链剖分+线段树
题目描述 口袋妖怪(又名神奇宝贝或宠物小精灵)红/蓝/绿宝石中的水系道馆需要经过三个冰地才能到达馆主的面前,冰地中 的每一个冰块都只能经过一次.当一个冰地上的所有冰块都被经过之后,到下一个冰地的楼梯才 ...
- BZOJ2819Nim——树链剖分+线段树+Nim游戏
题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略 ...
- POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )
POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- [HDU3710] Battle Over Cities [树链剖分+线段树+并查集+kruskal+思维]
题面 一句话题意: 给定一张 N 个点, M 条边的无向连通图, 每条边上有边权 w . 求删去任意一个点后的最小生成树的边权之和. 思路 首先肯定要$kruskal$一下 考虑$MST$里面去掉一个 ...
随机推荐
- linux c ---raise 使用范例的代码
把做工程过程中比较好的代码片段收藏起来,下面代码内容是关于linux c ---raise 使用范例的代码,希望对各位有所用途. #include <sys/types.h> #inclu ...
- Java新知识系列 七
抽象类和接口的区别和特点 java的JDK中包含的五个工具 编译型语言和解释型语言 Java和C++的区别` 常见的ASCII的值 Forward和Redirect之间的对比 Web Service ...
- 【笔记】两个根因分析方法:5WHY&10WHY
什么是问题根因分析 根本原因分析(root cause analysis):通过调查和分析问题哪里出错.为什么出错,寻求防止差错事故再次发生的必要措施,从而提高服务安全和质量. 根因分析目标 问题(发 ...
- GenericServlet 、Servlet和httpServler
-------[转] 1.GenericServlet类是所有Servlet类的祖先类. 2.HttpServlet类继承了GenericServlet类. 3.Servlet有两个非常重要的的对象, ...
- 关于C#传给视图的字符串带有Html转义字符的处理
public class PageBarHelper//分页类 { public static string GetPageBar(string requestHref,int totalCount, ...
- Sql Server 获取本周周一
SELECT DATEADD(Day,(@i+1)-(DATEPART(Weekday,getdate())+@@DATEFIRST-1)%7,getdate())
- iOS 开发 nonatomic 和 atomic
nonatomic : 非原子属性 atomic : 原子属性 如果不写关键字 那么默认就是 原子属性 - 多线程写入属性时,保证同一时间只有一个线程能够执行写入操作 - 单(线程)写多(线程 ...
- SQLServer无法删除登录名'***',因为该用户当前正处于登录状态解决方法
问题描述: sqlserver在删除登录名的时候提示删除失败 标题: Microsoft SQL Server Management Studio -------------------------- ...
- Saltstack_使用指南01_部署
1. 主机规划 服务器名称 操作系统版本 内网IP 外网IP(模拟) Hostname 部署模块 salt100 CentOS7.5 172.16.1.100 10.0.0.100 salt100 s ...
- PyCharm使用小技巧
本文部分内容参考了明宇李前辈的博客,原文请阅读 Pycharm的配置(背景颜色,字体,解释器等): 鼠标滑轮控制字体大小 部分参考了墨颜前辈的博客,原文请阅读 用鼠标滑轮控制代码字体大小: 感谢各位前 ...