前言:对于我这种追求极致的人来说,效率很重要。

前面看到网上关于python循环的测评,到自己在项目中的应用,发现,并不是这么回事。所以,写下次博文,一次性了解这个问题。

语言版本:python3.6

平台:mac10.12.6

IDE:pycharm community 2018.2

关于循环的介绍:

1. for循环

  我们最开始使用的循环。for循环的对象是可迭代对象。这里不详述。

2. 列表解析式

  与之类似,字典解析式,集合解析式等。

3. map循环

  与之类似有reduce,filter。这里不详述。

最终测试结果:

 map比列表解析式快一点点,

 列表解析式,大概比普通for循环快1.5倍。

 符合预期。(擦了一把汗!)

ps:有同学测试,说map速度远远大与列表推导式(大概快10000倍),这是因为他返回的是生成器对象,并没有计算出结果,所以这个不算。

以上测试,只是反映实际情况一种。并不能说这个是公理。仅仅给大家提供参考。博主不才。

测试开始:

import time
i = list(range(1000000)) # 生成测试序列

首先测试将数字转换成字符串:

i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
lt_1.append(str(each))
t2 = time.time()
print(t2 - t)
lt_2 = [lambda x: str(x) for x in i]
t3 = time.time()
print(t3 - t2)
lt_3 = list(map(lambda x: str(x), i))
t4 = time.time()
print(t4 - t3)

  结果:

0.5911688804626465
1.0817310810089111
0.7083189487457275

0.4922349452972412
1.0927751064300537
0.4922208786010742

0.5165529251098633
1.100153923034668
0.5037112236022949

结果很意外,对吧,直接采用for循环,效率比列表解析式高一倍。和网络上的教程有出入。

说明:python3 map返回的是生成器(python2 map返回列表),需要使用list来驱动他得出结果。

接下来测试计算:

i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
each += 1
lt_1.append(each)
t2 = time.time()
print(t2 - t)
lt_2 = [lambda x: x+1 for x in i]
t3 = time.time()
print(t3 - t2)
lt_3 = list(map(lambda x: x+1, i))
t4 = time.time()
print(t4 - t3)

结果:

0.349423885345459
1.0195939540863037
0.21120715141296387

0.4159379005432129
1.1701478958129883
0.21973800659179688

0.32332897186279297
1.2796630859375
0.36236000061035156

这里能看到,map显著比for循环高,for循环比列表解析式快,这个貌似还是有些出入。

ps:对每次结果不同的解释:由于系统本身还在运行其他程序。所以,在调用python时,不可避免需要等待其他程序结束。所以会出现第三次结果的情况。

我测试了很多遍,基本结论是,map比for循环大概快1.5倍。

但是,当我把结果打印出来时,发现,列表解析式内使用lamba,返回的是<function <listcomp>.<lambda> at 0x10e154510>,不会直接返回值:所以,更新下测试代码。

# -------------------------------
i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
each += 1
lt_1.append(each)
t2 = time.time()
print(t2 - t)
def ggwp(x):
return x+1
lt_2 = [ggwp(x) for x in i]
t3 = time.time()
print(t3 - t2)
lt_3 = list(map(lambda x: x+1, i))
t4 = time.time()
print(t4 - t3)

结果:

0.32393980026245117
0.2332770824432373
0.2076709270477295

0.3169240951538086
0.23195600509643555
0.20856499671936035

0.2955038547515869
0.23477792739868164
0.20820212364196777

所以,最终结果是:map速度最快,其次是列表解析式,最后是for循环。

同样更新第一个实验的测试代码:

i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
lt_1.append(str(each))
t2 = time.time()
# print(lt_1)
print(t2 - t)
def ggwp(x):
return str(x)
lt_2 = [ggwp for x in i]
t3 = time.time()
# print(lt_2)
print(t3 - t2)
lt_3 = list(map(lambda x: str(x), i))
t4 = time.time()
# print(lt_3)
print(t4 - t3)

0.5370810031890869
0.08401012420654297
0.5191819667816162

发现,这个列表解析式,效率明显高于其他2个。于是,再次修改代码。

import time
# -------------------------------
i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
lt_1.append(str(each))
t2 = time.time()
# print(lt_1)
print(t2 - t)
def ggwp(x):
return str(x)
lt_2 = [ggwp for x in i]
t3 = time.time()
# print(lt_2)
print(t3 - t2)
# lt_3 = list(map(lambda x: str(x), i))
lt_3 = list(map(ggwp, i))
t4 = time.time()
# print(lt_3)
print(t4 - t3)

0.480226993560791
0.06554508209228516
0.5108628273010254

是不是很神奇?WHY?为什么列表解析式的效率一下子提高这么多?

找到原因,因为红色的ggwp,只写了函数名。和之前的lambda类似,<function ggwp at 0x10e255488>。这个不符合要求。

修正后:

lt_2 = [ggwp(x) for x in i]

0.4904050827026367
0.5147149562835693
0.49653005599975586

0.5053339004516602
0.502392053604126
0.49272894859313965

0.49378418922424316
0.4825170040130615
0.5087540149688721

发现,速度差不多。基本相同。

再来测试乘法运算:

i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
each = each*each
lt_1.append(each)
# print(lt_1)
t2 = time.time()
print(t2 - t)
def ggwp(x):
return x*x
lt_2 = [ggwp(x) for x in i]
# print(lt_2)
t3 = time.time()
print(t3 - t2)
lt_3 = list(map(lambda x: x*x, i))
# print(lt_3)
t4 = time.time()
print(t4 - t3)

0.5563499927520752
0.3827509880065918
0.3217048645019531

0.3309590816497803
0.21875500679016113
0.2042989730834961

0.3309590816497803
0.21875500679016113
0.2042989730834961

结果:map总体比列表解析式快一点。列表解析式大概比for循环快1.5倍。

----------------------------------------------------------------

python 几个循环的效率测试的更多相关文章

  1. Python执行效率测试模块timei的使用方法与与常用Python用法的效率比较

    timeit模块用于测试一段代码的执行效率 1.Timer类 Timer 类: __init__(stmt="pass", setup="pass", time ...

  2. python基础之循环结构以及列表

    python基础之编译器选择,循环结构,列表 本节内容 python IDE的选择 字符串的格式化输出 数据类型 循环结构 列表 简单购物车的编写 1.python IDE的选择 IDE的全称叫做集成 ...

  3. 第五篇:python基础之循环结构以及列表

    python基础之循环结构以及列表   python基础之编译器选择,循环结构,列表 本节内容 python IDE的选择 字符串的格式化输出 数据类型 循环结构 列表 简单购物车的编写 1.pyth ...

  4. Python_线程、线程效率测试、数据隔离测试、主线程和子线程

    0.进程中的概念 三状态:就绪.运行.阻塞 就绪(Ready):当进程已分配到除CPU以外的所有必要资源,只要获得处理机便可立即执行,这时的进程状态成为就绪状态. 执行/运行(Running)状态:当 ...

  5. 进程池原理及效率测试Pool

    为什么会有进程池的概念? 当我们开启50个进程让他们都将100这个数减1次减到50,你会发现特别慢! 效率问题,原因: 1,开辟内存空间.因为每开启一个进程,都会开启一个属于这个进程池的内存空间,因为 ...

  6. 关于for,while,dowhile效率测试

    引言 大家都知道每种循环对应的效率是不同的,书中都说在循环中使用减法的效率是比加法的效率高的,具体情况是怎么样,我们将详细列出各循环的执行效率问题.本文通过查看汇编代码比较各循环的效率以及i++,++ ...

  7. Python--day39--进程池原理及效率测试

    #为什么要有进程池的概念 #效率 #每次开启进程都要创建一个属于这个进程的内存空间 #寄存器 堆栈 文件 #进程过多 操作系统调度进程 # #进程池 #python中的 先创建一个属于进程的池子 #这 ...

  8. Python列表倒序输出及其效率

    Python列表倒序输出及其效率 方法一 使用Python内置函数reversed() for i in reversed(arr): pass reversed返回的是迭代器,所以不用担心内存问题. ...

  9. NHibernate Demo 和 效率测试

    本文关于NHibernate的Demo和效率测试,希望对大家有用. 1.先去官网下载Nhibernate 2.放入到项目中并建立Helper类 private static ISession _Ses ...

随机推荐

  1. retrofit和RxJava结合

    public class MainActivity extends AppCompatActivity { @SuppressLint("CheckResult") protect ...

  2. 论文解读《Understanding the Effective Receptive Field in Deep Convolutional Neural Networks》

    感知野的概念尤为重要,对于理解和诊断CNN网络是否工作,其中一个神经元的感知野之外的图像并不会对神经元的值产生影响,所以去确保这个神经元覆盖的所有相关的图像区域是十分重要的:需要对输出图像的单个像素进 ...

  3. 云计算管理平台之OpenStack镜像服务glance

    一.glance简介 openstack中的glance服务是用来存储在openstack上启动虚拟机所需镜像:它主要用于发现.注册及检索虚拟机镜像:它通过提供RESTful风格的api对外提供服务: ...

  4. APIO2008免费道路

    题目大意 给定一张n个点m条边的图,图上有两种边,求保证有k条第一种边的情况下的最小生成树 传送门 题解 考虑最小生成树kruskal算法 先找到不含限制的最小生成树,然后就可以知道哪些第一种边是必选 ...

  5. shell脚本之编程基础介绍

    1.shell脚本简介 1.1 shell是什么? shell是一个命令解释器,它在操作系统的最外层负责直接与用户对话,把用户的输入解释给操作系统:并处理各种各样的操作系统的输入,将结果输出到屏幕返回 ...

  6. 带货直播源码开发采用MySQL有什么优越性

    MySQL是世界上最流行的开源关系数据库,带货直播源码使用MySQL,可实现分钟级别的数据库部署和弹性扩展,不仅经济实惠,而且稳定可靠,易于运维.云数据库 MySQL 提供备份恢复.监控.容灾.快速扩 ...

  7. R-C3D:用于时间活动检测的区域3D网络

    论文原称:R-C3D: Region Convolutional 3D Network for Temporal Activity Detection(2017) 主要贡献: 1.提出一个包括活动候选 ...

  8. HTTPDNS开源 Android SDK,赋能更多开发者参与共建

    为赋能更多开发者参与共建,阿里云HTTPDNS开源 Android SDK,iOS SDK也在做开源准备,不久也将开放给开发者.HTTPDNS是阿里云移动研发平台面向多端应用(移动端APP,PC客户端 ...

  9. Python面试题及答案汇总整理(2019版)

    发现网上很多Python面试题都没有答案,所以博主花了很长时间搜集整理了这套Python面试题及答案,由于网上的Python相关面试题大多数都是2019年的,所以我这个也是2019版的,哈哈~ (文末 ...

  10. 天啦噜!仅仅5张图,彻底搞懂Python中的深浅拷贝

    Python中的深浅拷贝 在讲深浅拷贝之前,我们先重温一下 is 和==的区别. 在判断对象是否相等比较的时候我们可以用is 和 == is:比较两个对象的引用是否相同,即 它们的id 是否一样 == ...