CF716D Complete The Graph
图论+构造
首先可以发现如果去除了可以改变权值的边,$s$到$t$的最短路若小于$l$,那么一定不行
若等于则直接将可改边权的边改为inf,输出即可
那么现在原图中的最短路是大于$l$的
因为每一条边是都要加入图中的,而且每条边边权至少为1
那么可以不断向图中加入权值为1的边,并且在加边的过程中不断跑最短路
如果加完当前的边,$s$到$t$的最短路小于l的话,将这条边权值增加
剩下的边边权改为inf即可
简单证明这种做法
首先考虑加入1边后,最短路依然大于$l$,那么继续使最短路减小
再考虑加入1边后,最短路小于$l$
因为在加入这条边之前最短路大于$l$,那么加入这条边后,最短路肯定经过这条边
而增加边权之后,最短路还是比之前的小,那么最短依然经过这条边
不会出现增加了这条边的边权之后,最短路不经过这条边的情况
那么得到的图最短路必定为$l$
#include <bits/stdc++.h>
#define ll long long
#define inf (ll)1e17;
using namespace std;
const int MAXN=20100;
int n,m,l,s,t,tot;
int first[1100],nxt[MAXN],point[MAXN];
int vi[1100];
ll d[1100],len[MAXN];
struct node
{
int u,v;
ll l;
}sh[MAXN];
void add_edge(int x,int y,int z)
{
tot++;
nxt[tot]=first[x];
first[x]=tot;
point[tot]=y;
len[tot]=z;
}
void spfa()//最短路
{
queue <int> q;
for (int i=0;i<n;i++)
d[i]=inf;
d[s]=0;
vi[s]=1;
q.push(s);
while (!q.empty())
{
int f;
f=q.front();
q.pop();
vi[f]=0;
for (int i=first[f];i!=-1;i=nxt[i])
{
int u;
u=point[i];
if (d[u]>d[f]+len[i])
{
d[u]=d[f]+len[i];
if (!vi[u])
{
vi[u]=1;
q.push(u);
}
}
}
}
}
int main()
{
tot=-1;
memset(first,-1,sizeof(first));
memset(nxt,-1,sizeof(nxt));
scanf("%d%d%d%d%d",&n,&m,&l,&s,&t);
for (int i=1;i<=m;i++)
{
scanf("%d%d%lld",&sh[i].u,&sh[i].v,&sh[i].l);
if (sh[i].l==0)
continue;
add_edge(sh[i].u,sh[i].v,sh[i].l);
add_edge(sh[i].v,sh[i].u,sh[i].l);
}
spfa();
if (d[t]<l)
{
printf("NO\n");
return 0;
}
if (d[t]==l)//注意
{
printf("YES\n");
for (int i=1;i<=m;i++)
{
if (sh[i].l==0)
sh[i].l=inf;
printf("%d %d %lld\n",sh[i].u,sh[i].v,sh[i].l);
}
return 0;
}
int wh;
for (int i=1;i<=m;i++)
{
if (sh[i].l==0)
{
add_edge(sh[i].u,sh[i].v,1);
add_edge(sh[i].v,sh[i].u,1);
spfa();
if (d[t]>l)
{
sh[i].l=1;
continue;
}
sh[i].l=1+l-d[t];
wh=i;
break;
}
}
tot=-1;
memset(first,-1,sizeof(first));
memset(nxt,-1,sizeof(nxt));
for (int i=wh+1;i<=m;i++)
{
if (sh[i].l==0)
sh[i].l=inf;
}
for (int i=1;i<=m;i++)
{
add_edge(sh[i].u,sh[i].v,sh[i].l);
add_edge(sh[i].v,sh[i].u,sh[i].l);
}
spfa();
if (d[t]!=l)
{
printf("NO\n");
return 0;
}
printf("YES\n");
for (int i=1;i<=m;i++)
printf("%d %d %lld\n",sh[i].u,sh[i].v,sh[i].l);
}
CF716D Complete The Graph的更多相关文章
- Codeforces 715B & 716D Complete The Graph 【最短路】 (Codeforces Round #372 (Div. 2))
B. Complete The Graph time limit per test 4 seconds memory limit per test 256 megabytes input standa ...
- CF715B. Complete The Graph
CF715B. Complete The Graph 题意: 给一张 n 个点,m 条边的无向图,要求设定一些边的边权 使得所有边权都是正整数,最终 S 到 T 的最短路为 L 1 ≤ n ≤ 100 ...
- 【Codeforces】716D Complete The Graph
D. Complete The Graph time limit per test: 4 seconds memory limit per test: 256 megabytes input: sta ...
- CodeForces 715B Complete The Graph 特殊的dijkstra
Complete The Graph 题解: 比较特殊的dij的题目. dis[x][y] 代表的是用了x条特殊边, y点的距离是多少. 然后我们通过dij更新dis数组. 然后在跑的时候,把特殊边都 ...
- 「CF716D」Complete The Graph「最短路」
题意 给定一个\(n\)个点\(m\)条边的无向图,有一些边权暂时为\(0\),你需要分配一个\([1, 10^{18}]\)的数.最终使得\(s\)到\(t\)最短路为\(L\),输出一个可行的分配 ...
- codeforces 715B:Complete The Graph
Description ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m ...
- Codeforces 715B. Complete The Graph 最短路,Dijkstra,构造
原文链接https://www.cnblogs.com/zhouzhendong/p/CF715B.html 题解 接下来说的“边”都指代“边权未知的边”. 将所有边都设为 L+1,如果dis(S,T ...
- Codeforces Round #372 (Div. 1) B. Complete The Graph (枚举+最短路)
题目就是给你一个图,图中部分边没有赋权值,要求你把无权的边赋值,使得s->t的最短路为l. 卡了几周的题了,最后还是经群主大大指点……做出来的…… 思路就是跑最短路,然后改权值为最短路和L的差值 ...
- Codeforces715 B. Complete The Graph
传送门:>Here< 题意:给出一张带权无向图,其中有一些边权为0.要求将边权为0的边的边权重置为一个任意的正整数,使得从S到T的最短路为L.判断是否存在这种方案,如果存在输出任意一种 解 ...
随机推荐
- matlab中find 查找非零元素的索引和值
来源:https://ww2.mathworks.cn/help/matlab/ref/find.html?searchHighlight=find&s_tid=doc_srchtitle f ...
- javaFX 在窗口的标题栏显示当前时间,1秒更新一次时间
例1:在窗口的标题栏显示当前时间,1秒更新一次时间 1 import java.text.DateFormat; 2 import java.text.SimpleDateFormat; 3 impo ...
- P4454 [CQOI2018]破解D-H协议
链接 这题并不难只是需要把题读懂 - By ShadderLeave 一句话题意 给定两个数 \(p\)和\(g\),有\(t\)组询问,每组询问给出\(A\)和\(B\) 其中 A = \(g^a ...
- 【题解】 [EZEC-4]求和
对于百分之十的数据:随便过. 下面推式子: \[\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)^{i+j} \] \[=\sum_{d=1}^n\sum_{i=1}^n\sum_{ ...
- Docker入门手册
20.Docker 20.1 Docker的起源 2010年,几个搞IT的年轻人,在美国旧金山成立了一家名叫"dotCloud"的公司,这家公司主要提供基于PaaS的云计算技术服务 ...
- Tensorflow学习笔记No.6
数据的批标准化 本篇主要讲述什么是标准化,为什么要标准化,以及如何进行标准化(添加BN层). 1.什么是标准化 传统机器学习中标准化也叫做归一化. 一般是将数据映射到指定的范围,用于去除不同维度数据的 ...
- 关于freemodbus协议中eMBFuncReadHoldingRegister()函数的所谓错误
摘要:网上看到有好心的网友提示,freemodbus协议中的mbfuncholding.c 文件中eMBFuncReadHoldingRegister()函数,有一处错误,即:第185行的" ...
- fastadmin 增加批量操作字段 提示无权限
是这样的找了权限节点的问题,始终找不到,后来 在社区传世人回答别人问题是提及到 $multiFields 就全局搜了下 在基类 Backend 里找到了这个.然后拿到 控制器中添加需要的参数 再次尝 ...
- MeteoInfoLab脚本示例:中文处理
在脚本中使用中文需要指明是unicode编码,即在含有中文的字符串前加u,比如:u'中文'.还需要将字体指定为一种中文字体.详见下面的例子.脚本程序: x = [1,2,3,4] y = [1,4,9 ...
- ES6之数组
数组新增方法 map(可以理解为是映射,以一定规则修改数组每一项并返回全新数组) reduce(可以理解为是汇总,一堆出来一个) filter(可以理解为过滤,筛选的意思,以一定规则拿到符合的项并返回 ...