题意:

\(Q\leq5000\)次询问,每次问你有多少对\((x,y)\)满足\(x\in[1,n],y\in[1,m]\)且\(gcd(x,y)\)的质因数分解个数小于等于\(p\)。\(n,m,p\leq5e5\)。

思路:

题目即求

\[\sum_{k}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]\quad,k满足质因数个数\leq p
\]

令\(f(n)\)为\(gcd\)为\(n\)的对数,\(F(n)\)为\(gcd\)为\(n\)倍数的对数。

由莫比乌斯反演可得

\[\begin{aligned}
\sum_{k}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]
&=\sum_kf(k)\\
&=\sum_k\sum_{k|d}\mu(\frac{d}{k})F(d)\\
&=\sum_k\sum_{k|d}\mu(\frac{d}{k})\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\\
&=\sum_d\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\sum_{k|d}\mu(\frac{d}{k})
\end{aligned}
\]

\(\sum_{k|d}\mu(\frac{d}{k})\)可以直接打表打出来。

直接枚举\(d\),因为\(\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor\)很多都是重复的,那么我可以直接分块加速,先求\(\sum_{k|d}\mu(\frac{d}{k})\)的前缀和,然后每次选\(i\)~\(min(\lfloor \frac{n}{\lfloor \frac{n}{i}\rfloor}\rfloor,\lfloor \frac{m}{\lfloor \frac{m}{i}\rfloor}\rfloor)\)这个区间走,那么\(\sqrt{(min(n, m))}\)就遍历完了。

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 5e5 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std;
int num[maxn], sum[21][maxn];
int mu[maxn], vis[maxn];
int prime[maxn], cnt;
void getmu(int n){
memset(vis, 0, sizeof(vis));
memset(mu, 0, sizeof(mu));
memset(num, 0, sizeof(num));
cnt = 0;
mu[1] = 1;
for(int i = 2; i <= n; i++) {
if(!vis[i]){
prime[cnt++] = i;
mu[i] = -1;
num[i] = 1;
}
for(int j = 0; j < cnt && prime[j] * i <= n; j++){
vis[i * prime[j]] = 1;
num[i * prime[j]] = num[i] + 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
} void init(){
memset(sum, 0, sizeof(sum)); //sum[p][d]:d的除数的质因子个数为p的sum(mu)
for(int i = 1; i <= 5e5; i++){
for(int j = i; j <= 5e5; j += i){
sum[num[i]][j] += mu[j / i];
}
}
for(int i = 1; i <= 5e5; i++){ //d的除数质因子个数小于p的sum(mu)
for(int j = 1; j <= 19; j++){
sum[j][i] += sum[j - 1][i];
}
} for(int i = 1; i <= 5e5; i++){
for(int j = 0; j <= 19; j++){
sum[j][i] += sum[j][i - 1];
}
}
}
int main(){
getmu(5e5);
init();
ll n, m;
int p, T;
scanf("%d", &T);
while(T--){
ll ans = 0;
scanf("%lld%lld%d", &n, &m, &p);
if(p > 19){
printf("%lld\n", n * m);
continue;
}
for(int i = 1; i <= min(n, m);){
int l, r;
l = i, r = min(n / (n / i), m / (m / i));
ans += 1LL * (n / i) * (m / i) * (sum[p][r] - sum[p][l - 1]);
i = r + 1;
}
printf("%lld\n", ans);
}
return 0;
}

HDU 4746 Mophues(莫比乌斯反演)题解的更多相关文章

  1. HDU 4746 Mophues (莫比乌斯反演应用)

    Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

  2. hdu 4746 Mophues 莫比乌斯反演+前缀和优化

    Mophues 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<=n, 1<=b<=m) 有Q组数据:(n, m, ...

  3. HDU 4746 Mophues 莫比乌斯反演

    分析: http://blog.csdn.net/acdreamers/article/details/12871643 分析参见这一篇 http://wenku.baidu.com/view/fbe ...

  4. Mophues HDU - 4746 (莫比乌斯反演)

    Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...

  5. HDU - 4746预处理莫比乌斯反演

    链接 求[1,n] 和 [1,m]中有多少对数的GCD的素因子个数小于等于p 直接暴力做特定超时,所以我们想办法预处理,对于p大于18(1到5e5的最大素数因子个数)的情况,每一对都满足条件,O(1) ...

  6. HDU 4746 Mophues【莫比乌斯反演】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...

  7. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  8. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  9. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

随机推荐

  1. java 记录数据持续变化时间

    1.需求:获取count为null和不为null的持续变化 [{count=0, time=0}, {count=10, time=1000}, {count=20, time=2000}, {cou ...

  2. 网络流量预测入门(二)之LSTM介绍

    目录 网络流量预测入门(二)之LSTM介绍 LSTM简介 Simple RNN的弊端 LSTM的结构 细胞状态(Cell State) 门(Gate) 遗忘门(Forget Gate) 输入门(Inp ...

  3. Soul API 网关源码解析 02

    如何读开源项目:对着文档跑demo,对着demo看代码,懂一点就开始试,有问题了问社区. 今日目标: 1.运行examples下面的 http服务 2.学习文档,结合divde插件,发起http请求s ...

  4. has been blocked by CORS policy: Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-Origin' header is present on the requested resource.

    前端显示: has been blocked by CORS policy: Response to preflight request doesn't pass access control che ...

  5. 成为一名优秀的Java程序员9+难以置信的公式

    成为一名优秀的Java程序员 成为一名优秀的Java程序员并不重要,但是首先您应该了解基本的编程语言. 好吧,你知道那太好了.我们应该一步一步地精通Java编程,并应遵循所有说明,改进Java的编程逻 ...

  6. UI自动化测试实战

    前言 前面我们已经搭建好了wordpress网站,如果需要查看运行效果可以看我前面的搭建文章,下面我们来进行自动化测试的练习. 示例 首先我们测试自动登陆 import unittest from s ...

  7. SQL关键字

    不等号(!=,<>) 查询出来的结果集不包含有当前字段为null的数据 <> 是标准的sql语法, 开发中尽量使用<>, 会将字段为null的数据也当做满足不等于的 ...

  8. Python魔法函数与两比特量子系统模拟

    技术背景 本文主要涵盖两个领域的知识点:python的魔法函数和量子计算模拟,我们可以通过一个实际的案例来先审视一下这两个需求是如何被结合起来的. 量子计算模拟背景 ProjectQ是一个非常优雅的开 ...

  9. Display属性学习总结

    HTMl元素根据表现形式,常见的可以分为两类. (1)块元素(block) (2)行内元素(inline). 当然,除了以上两种元素类型外,还有inline-block.table-cell等元素类型 ...

  10. PL/SQL 学习分享(续)

    事务 事务的概述 事务的特性 回滚点 事务实例练习 动态SQL 动态SQL概述 动态SQL应用场合 动态SQL的执行语法 绑定变量 动态SQL创建表 动态SQL绑定变量 动态SQL综合案例添加数据 使 ...