主要的收获是。。如何优化你递推式里面不必要的决策

之前的代码

这个代码在HDU超时了,这就对了。。这个复杂度爆炸。。

但是这个思路非常地耿直。。那就是只需要暴力枚举删两个和删三个的情况,于是就非常耿直的枚举是哪两个n^2,是哪三个n^3

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std;
int T,n,m;
int a[305],d[305];
bool f[305][305];
//定向从左往右删除
int dp[305][305];
int dfs(int l,int r){
// printf("l%d r%d\n",l,r);
if(dp[l][r]!=-1) return dp[l][r];
if(l>=r) return dp[l][r]=0;
int i,j,k,p=0;
//枚举删两个
for(i=l;i<r;++i)
for(j=i+1;j<=r;++j)
{
//删i,j
//如果dfs(x,y)==y-x+1,则说明[x,y]能被完全删除
// printf("part:: i%d j%d\n",i,j);
if(f[i][j]&&(dfs(i+1,j-1)==j-i-1)){
// printf("Tpart:: i%d j%d\n",i,j);
p=max(p,(j-i+1)+dfs(l,i-1)+dfs(j+1,r));
// printf("VAL:: %d\n",p);
}
}
//枚举删三个
for(i=l;i<r;++i)
for(j=i+1;j<r;++j)
for(k=j+1;k<=r;++k)
{
// printf("part:: i%d j%d k%d\n",i,j,k);
if(f[i][j]&&f[j][k]&&(a[j]-a[i]==a[k]-a[j])&&(dfs(i+1,j-1)==j-i-1)&&(dfs(j+1,k-1)==k-j-1)){
// printf("Tpart:: i%d j%d k%d\n",i,j,k);
p=max(p,(k-i+1)+dfs(l,i-1)+dfs(k+1,r));
// printf("VAL:: %d\n",p);
}
}
return dp[l][r]=p;
}
void solve(){
memset(dp,0,sizeof(dp));
int l,r,i,j,k,len;
for(len=2;len<=n;++len){
for(l=1;l<n;++l){
r=l+len-1;
printf("DP l%d r%d\n",l,r);
if(l>=r) continue;
for(i=l;i<r;++i){
for(j=i+1;j<=r;++j){
printf("part2 ASK (%d,%d) (%d,%d)\n",l,i-1,j+1,r);
if(f[i][j]&&dp[i+1][j-1]==j-i-1) {
// printf("part2 ask (%d,%d) (%d,%d)\n",l,i-1,j+1,r);
dp[l][r]=max(dp[l][r],(j-i+1)+dp[l][i-1]+dp[j+1][r]);
}
}
}
for(i=l;i<r;++i){
for(j=i+1;j<r;++j){
for(k=j+1;k<=r;++k){
printf("part3 ASK (%d,%d) (%d,%d)\n",l,i-1,k+1,r);
if(f[i][j]&&f[j][k]&&(a[j]-a[i]==a[k]-a[j])&&dp[i+1][j-1]==j-i-1&&dp[j+1][k-1]==k-j-1){
// printf("part3 ask (%d,%d) (%d,%d)\n",l,i-1,k+1,r);
dp[l][r]=max(dp[l][r],(k-i+1)+dp[l][i-1]+dp[k+1][r]);
}
}
}
}
}
}
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int i,j,k;
for(i=1;i<=n;++i) scanf("%d",a+i);
for(i=1;i<=m;++i) scanf("%d",d+i);
memset(f,0,sizeof(f));
for(i=1;i<n;++i)
for(j=i+1;j<=n;++j)
for(k=1;k<=m;++k) f[i][j]|=(a[j]-a[i]==d[k]);
solve();
printf("%d\n",dp[1][n]);
}
return 0;
}

我们发现了一个枚举的方法是

在区间[l,r],要么我们只取l,r这两个数删掉

要么枚举在区间[l,r]内的分割点k,于是我们只需要考虑l,k,r这三个数能不能删掉

注意到我们l,r是必选的。。这样就不能形成最后一次删掉的数字在中间

于是我们枚举l,r不是必选的情况,递归分成两个子区间,将这个不选的决策交给子区间,这样我们就发现有了这个分解的步骤

即使采用了上述前两个策略。。凭借只用短长度区间l,r全选和,l,k,r全选就能形成所有的决策,我认为这个想法是非常巧妙的

虽然大佬们认为可能这很显然Orz,但是不得不说这种递归策略非常巧妙。。可能是我还没掌握精髓吧。。

放上1499ms/3000ms的代码

细节:小心r越界,因为我的len一直枚举到n,

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std;
int T,n,m;
int a[305],d[305];
bool f[305][305];
//定向从左往右删除
int dp[305][305];
void solve(){
memset(dp,0,sizeof(dp));
int l,r,i,j,k,len;
for(len=2;len<=n;++len){
for(l=1;l<n;++l){
r=l+len-1;
// printf("DP (%d,%d)\n",l,r);
if(r>n) continue;
if(l>=r) continue;
// printf("ASK (%d,%d) \n",l+1,r-1);
if(f[l][r]&&dp[l+1][r-1]==r-l-1)
dp[l][r]=max(dp[l][r],2+dp[l+1][r-1]);
for(i=l;i<r;++i) {
// printf("ASK (%d,%d) (%d,%d)\n",l,i,i+1,r);
dp[l][r]=max(dp[l][r],dp[l][i]+dp[i+1][r]);//当前区间保留头尾的情况
//这一句是我所需要的精华。。
}
for(k=l;k<=r;++k){
// printf("ASK (%d,%d) (%d,%d)\n",l+1,k-1,k+1,r-1);
if(f[l][k]&&f[k][r]&&(a[k]-a[l]==a[r]-a[k])&&dp[l+1][k-1]==k-l-1&&dp[k+1][r-1]==r-k-1){
dp[l][r]=max(dp[l][r],r-l+1);
}
}
}
}
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int i,j,k;
for(i=1;i<=n;++i) scanf("%d",a+i);
for(i=1;i<=m;++i) scanf("%d",d+i);
memset(f,0,sizeof(f));
for(i=1;i<n;++i)
for(j=i+1;j<=n;++j)
for(k=1;k<=m;++k) f[i][j]|=(a[j]-a[i]==d[k]);
solve();
printf("%d\n",dp[1][n]);
}
return 0;
}

hdu5693D++游戏 区间DP-暴力递归的更多相关文章

  1. 圆桌游戏(区间DP)

    2.圆桌游戏 (game.cpp/c/pas) [问题描述] 有一种圆桌游戏是这样进行的:n个人围着圆桌坐成一圈,按顺时针顺序依次标号为1号至n号.对1<=i<=n的i来说,i号的左边是i ...

  2. P1005 矩阵取数游戏[区间dp]

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的\(m*n\)的矩阵,矩阵中的每个元素\(a_{i,j}\)均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n个.经过m次后 ...

  3. BZOJ 2121: 字符串游戏 区间DP + 思维

    Description BX正在进行一个字符串游戏,他手上有一个字符串L,以及其他一些字符串的集合S,然后他可以进行以下操作:对 于一个在集合S中的字符串p,如果p在L中出现,BX就可以选择是否将其删 ...

  4. 洛谷 P1043 数字游戏 区间DP

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  5. 多边形游戏——区间dp

    题目描述 多边形(Polygon)游戏是单人玩的游戏,开始的时候给定一个由N个顶点构成的多边形(图1所示的例子中,N=4),每个顶点被赋予一个整数值,而每条边则被赋予一个符号:+(加法运算)或者*(乘 ...

  6. qscoj 喵哈哈村的打印机游戏 区间dp

    点这里去看题 区间dp ,dp[l][r][d]代表从l到r的区间底色为d,具体看代码 第一次见到区间dp...两个小时对着敲了五遍终于自己敲懂了一遍ac #include<bits/stdc+ ...

  7. 【bzoj2121】字符串游戏 区间dp

    题目描述 给你一个字符串L和一个字符串集合S,如果S的某个子串在S集合中,那么可以将其删去,剩余的部分拼到一起成为新的L串.问:最后剩下的串长度的最小值. 输入 输入的第一行包含一个字符串,表示L. ...

  8. Leetcode_877. 石子游戏(区间dp)

    偶数堆石子,只能从首尾取,取多的赢. 每次操作会产生两个子状态,区间dp,记得先枚举长度. code class Solution { public: int dp[505][505]; bool s ...

  9. 1166 矩阵取数游戏[区间dp+高精度]

    1166 矩阵取数游戏 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description [ ...

随机推荐

  1. JS获取本机地址,生成地图

    dome代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  2. linux设备

    设备初始化时同样要执行一个device_register函数,该函数传入一个struct device *类型的指针,因此要定义一个struct device类型的变量作为我们的设备. struct ...

  3. 控制tomcat日志文件的输出到catalina.out

    在catalina.sh中直接把下面的内容注释掉即可:

  4. Cisco发现协议

    CDP Cisco Discovery Protocol: 思科发现协议 是一个提供关于直接相连的交换机.路由器和其它Cisco设备的综合信息的专有工具 CDP 能够发现直接相邻的设备而不管这些设备所 ...

  5. Python+Selenium+Unittest实现PO模式web自动化框架(2)

    1.Common目录下的具体模块讲解. 2.basepage.py basepage.py模块里面是封装的对元素的操作.例如:查找元素.点击元素.文本输入等等. # --^_^-- coding:ut ...

  6. 基于go-cqhttp实现QQ机器人

    本篇文章记录一下自己在编写QQ机器人的时候所遇到的一些问题和核心功能的实现. QQ机器人RabbitBot采用python编写,由于是个人学习使用,故目前不会开源完整代码,只会放出核心代码供学习参考. ...

  7. 写给 Poppy 的 MySQL 速查表

    昨天 Poppy 问我是不是应该学一些网页开发的东西, 我的回答是这样的: 今天花了点时间汇总了一些 MySQL 简单的命令. ======== 正文分割线 ======== 有哪些常见的数据库: O ...

  8. 抽取一部分服务端做BFF(Backend For Frontend服务于前端的后端)

    Flutter+Serverless端到端研发架构实践 · 语雀 https://www.yuque.com/xytech/flutter/kdk9xc 2019-12-19 13:14 作者:闲鱼技 ...

  9. Python 学习笔记(1)

    Mac下载安装Python mac 系统自带有python .但就最新的mac系统而言,它自带的python版本为2.*版本. 虽然不影响对于老python项目的运行,但3.*版本中很多语法都发生了改 ...

  10. 分布式缓存 — memcache

    MemCache是一个自由.源码开放.高性能.分布式的分布式内存对象缓存系统,用于动态Web应用以减轻数据库的负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高了网站访问的速度.Mem ...