Mobile phones

POJ - 1195

Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows. The area is divided into squares. The squares form an S * S matrix with the rows and columns numbered from 0 to S-1. Each square contains a base station. The number of active mobile phones inside a square can change because a phone is moved from a square to another or a phone is switched on or off. At times, each base station reports the change in the number of active phones to the main base station along with the row and the column of the matrix. 

Write a program, which receives these reports and answers queries about the current total number of active mobile phones in any rectangle-shaped area. 

Input

The input is read from standard input as integers and the answers to the queries are written to standard output as integers. The input is encoded as follows. Each input comes on a separate line, and consists of one instruction integer and a number of parameter integers according to the following table. 

The values will always be in range, so there is no need to check them. In particular, if A is negative, it can be assumed that it will not reduce the square value below zero. The indexing starts at 0, e.g. for a table of size 4 * 4, we have 0 <= X <= 3 and 0 <= Y <= 3. 

Table size: 1 * 1 <= S * S <= 1024 * 1024 
Cell value V at any time: 0 <= V <= 32767 
Update amount: -32768 <= A <= 32767 
No of instructions in input: 3 <= U <= 60002 
Maximum number of phones in the whole table: M= 2^30 

Output

Your program should not answer anything to lines with an instruction other than 2. If the instruction is 2, then your program is expected to answer the query by writing the answer as a single line containing a single integer to standard output.

Sample Input

0 4
1 1 2 3
2 0 0 2 2
1 1 1 2
1 1 2 -1
2 1 1 2 3
3

Sample Output

3
4
——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
二维线段树,单点修改,区间查询,维护和。
______________________________________________________________________________________________________________________________________________

  1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<algorithm>
5 using namespace std;
6
7 const int maxn=1028;
8 struct LIE
9 {
10 int ll,lr,sum;
11 };
12 struct HANG
13 {
14 int hl,hr;
15 LIE lie[maxn<<2];
16 }hang[maxn<<2];
17 int op,n;
18 void readint(int &x)
19 {
20 char c=getchar();
21 int f=1;
22 for(;c<'0' || c>'9';c=getchar())if(c=='-')f=-f;
23 x=0;
24 for(;c<='9'&& c>='0';c=getchar())x=(x<<1)+(x<<3)+c-'0';
25 x*=f;
26 }
27 void buil(int pre,int cur,int ll,int lr)
28 {
29 hang[pre].lie[cur].ll=ll;hang[pre].lie[cur].lr=lr;
30 hang[pre].lie[cur].sum=0;
31 if(ll==lr)return ;
32 int mid=(ll+lr)>>1;
33 buil(pre,cur<<1,ll,mid);
34 buil(pre,cur<<1|1,mid+1,lr);
35 }
36 void build(int cur,int l,int r,int ll,int rr)
37 {
38 hang[cur].hl=l;hang[cur].hr=r;
39 buil(cur,1,ll,rr);
40 if(l==r)return ;
41 int mid=(l+r)>>1;
42 build(cur<<1,l,mid,ll,rr);
43 build(cur<<1|1,mid+1,r,ll,rr);
44 }
45 void upda(int pre,int cur,int hh,int lh,int dat)
46 {
47 hang[pre].lie[cur].sum+=dat;
48 if(hang[pre].lie[cur].ll==hang[pre].lie[cur].lr)return ;
49 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
50 if(lh<=mid) upda(pre,cur<<1,hh,lh,dat);
51 else upda(pre,cur<<1|1,hh,lh,dat);
52 }
53 void update(int cur,int x,int y,int dat)
54 {
55 upda(cur,1,x,y,dat);
56 if(hang[cur].hl==hang[cur].hr)return;
57 int mid=(hang[cur].hl+hang[cur].hr)>>1;
58 if(x<=mid)update(cur<<1,x,y,dat);
59 else update(cur<<1|1,x,y,dat);
60 }
61 int qure(int pre,int cur,int yl,int yr)
62 {
63 if(yl<=hang[pre].lie[cur].ll && hang[pre].lie[cur].lr<=yr)return hang[pre].lie[cur].sum;
64 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
65 int sum=0;
66 if(yl<=mid)sum+=qure(pre,cur<<1,yl,yr);
67 if(mid<yr)sum+=qure(pre,cur<<1|1,yl,yr);
68 return sum;
69 }
70 int query(int cur,int xl,int yl,int xr,int yr)
71 {
72 if(xl<=hang[cur].hl && hang[cur].hr<=xr)return qure(cur,1,yl,yr);
73 int mid=(hang[cur].hl+hang[cur].hr)>>1;
74 int sum=0;
75 if(xl<=mid)sum+=query(cur<<1,xl,yl,xr,yr);
76 if(mid<xr) sum+=query(cur<<1|1,xl,yl,xr,yr);
77 return sum;
78 }
79 int main()
80 {
81 readint(op);
82 while(op!=3)
83 {
84 if(!op)
85 {
86 readint(n);
87 build(1,0,n-1,0,n-1);
88 }
89 else if(op==1)
90 {
91 int x,y,dat;
92 readint(x);readint(y);readint(dat);
93 update(1,x,y,dat);
94 }
95 else if(op==2)
96 {
97 int xl,xr,yl,yr;
98 readint(xl);readint(yl);readint(xr);readint(yr);
99 printf("%d\n",query(1,xl,yl,xr,yr));
100 }
101 readint(op);
102 }
103 return 0;
104 }

POJ1195 二维线段树的更多相关文章

  1. POJ1195 Mobile phones 【二维线段树】

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 6644 De ...

  2. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  3. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  4. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  5. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  6. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  7. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  8. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  9. HDU 4819 Mosaic --二维线段树(树套树)

    题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...

随机推荐

  1. spring乱码处理

    在web.xml添加post乱码filter:CharacterEncodingFilter 2). 对于get请求中文参数出现乱码解决方法有两个: a. 修改tomcat配置文件添加编码与工程编码一 ...

  2. java位运算符生产环境应用分析

    在实际应用场景中 特别是 1,2,4,8,16 这种2的整数次幂的数字,因为具有非常典型的特点 首先是 1.2.4 这几位数了,因为他们的特点就是二进制只有一个为 1 的位,其他位都是 0,并同其他数 ...

  3. Jmeter(三十四) - 从入门到精通进阶篇 - 参数化(详解教程)

    1.简介 前边三十多篇文章主要介绍的是Jmeter的一些操作和基础知识,算是一些初级入门的知识点,从这一篇开始我们就来学习Jmeter比较高级的操作和深入的知识点了.今天这一篇主要是讲参数化,其实前边 ...

  4. 项目中处理数据常用Excel公式

    ="'"&A1&"'," 需求:是大佬给了excel,里面是700多个单号,要我从生产的数据库中查询出每个单号对应的类型,这时需要查数据库,我决 ...

  5. .NET的并发编程(TPL编程)是什么?

    写在前面 优秀软件的一个关键特征就是具有并发性.过去的几十年,我们可以进行并发编程,但是难度很大.以前,并发性软件的编写.调试和维护都很难,这导致很多开发人员为图省事放弃了并发编程.新版 .NET 中 ...

  6. SpringBoot嵌入式Servlet容器

    SpringBoot默认是将Tomcat作为嵌入式的servlet容器. 问题: 如何修改嵌入式的servlet容器? 1)在配置文件中设置对应的属性值 server.port=8081 # Tomc ...

  7. Redis-4.X 版本 Redis Cluster集群 (一)

    一 创建redis cluster 集群前提条件: 1 ) 每个redis node 节点采用相同的硬件配置,相同的密码. 2 ) 每个节点必须开启的参数: cluster-enabled yes # ...

  8. 【MySQL】CentOS7中使用systemctl工具管理启动和停止MySQL

    centos7以前版本,可以使用这个/etc/init.d/mysqld start 来启动mysql 但是centos7之后,通过systemctl start mysqld.service 这个要 ...

  9. 奇技淫巧,还是正统功夫? - Python推导式最全用法

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 python免费学习资 ...

  10. maven打包项目

    使用maven可以对项目进行很方便的管理,方便体现之一便是项目的打包发布变得方便,本文主要是讲一下maven打包时的一些命令和注意事项(皆是自己从应用中总结的理解,或有不对之处). maven项目打包 ...