[ZJOI2007]仓库建设(斜率dp优化)
前言
纪念一下我做的第二道斜率优化$dp$题,终于自己能把代码敲出来了,然而有很智障的$bug$,把$i$写成$q[i]$,找了半天QAQ。然后写$dp$公式并优化的能力稍微强了一点(自我感觉良好),对于斜率优化$dp$"去尾"的操作理解更深刻了
描述
$1∼N$号工厂,第$i$个工厂有$P_{i}$个成品,第$i$个工厂建立仓库需要$C_{i}$的费用,该工厂距离第一个工厂的距离为$X_{i}$,编号小的工厂只能往编号大的工厂搬用成品,每单位成品搬每单位距离需要花费1,问所有成品搬到工厂里面所需的最少费用是多少 [Link]
分析
设$f[i]$为第$i$个工厂建立仓库,前$i$个工厂的成品都搬到仓库中的最小花费,则容易得到动态转移方程:
$f[i]=min(f[j]+P_{j+1}(X_{i}-X_{j+1})+P_{j+2}(X_{i}-X_{j+2})+\cdots +P_{i-1}(X_{i}-X_{i+1}))+Ci$
通式为
$f[i]=min(f[j]+\sum_{k=j+1}^{i-1}P_{k}\cdot X_{i}-\sum_{k=j+1}^{i-1}P_{k}\cdot X_{k})+C_{i}$
令 $s[i]=\sum_{1}^{i}P[i],g[i]=\sum_{1}^{i}P_{i}\cdot X_{i}$
则方程变为
$f[i]=min(f[j]+X_{i}\cdot(s[i−1]−s[j])-(g[i−1]−g[j]))+C_{i}$
则对于最优决策 $j$ ,有
$f[j]+g[j]=X_{i}\cdot s[j]+f[i]-X_{i}\cdot s[i−1]−Ci$
也就是要找 $y=kx+b$,$k$已知,找一对$x,y$使得截距最小
Code
#include <cstdio>
#define ll long long
#define empty (head>=tail)
const int maxn = 1e6+10;
ll n, head, tail, j;
ll x[maxn], p[maxn], c[maxn];
ll q[maxn], s[maxn], g[maxn], f[maxn];
inline long double X(ll i) {return s[i];}
inline long double Y(ll i) {return f[i]+g[i];}
inline long double rate(ll j,ll k) {return (Y(k)-Y(j))/(X(k)-X(j));}
int main()
{
scanf("%lld", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld%lld%lld", &x[i], &p[i], &c[i]);
s[i] = s[i-1]+p[i], g[i] = g[i-1]+p[i]*x[i];
}
head = tail = 1;
for(int i = 1; i <= n; i++){
while(!empty&&rate(q[head],q[head+1])<x[i])head++;
j = q[head]; f[i] = f[j]+x[i]*(s[i-1]-s[j])-(g[i-1]-g[j])+c[i];
while(!empty&&rate(q[tail-1],q[tail])>rate(q[tail],i))tail--;
q[++tail] = i;
}
printf("%lld\n", f[n]);
}
思考
之前入门的题目说过,假如$g(c,b)<=g(b,a)$,那么这个$b$就没有任何用武之地了,就把这样的点去掉后再加入新的点。那么我会想到,能不能先不去掉这个$b$,直接加入新的点,就是在斜率小于$A[i]$的时候再去掉不也可以么,顶多时间长一点,然而现实给了我一发$WA$。我就去想为什么会是这个亚子?原因在于,必须保证通过前面的状态得到的$f[i]$为最优,而你的$b$可能会导致你通过原有的方式得到的$f[i]$并不是最优的,那么得到的$f[n]$自然不一定是最优解。
那我就去做了尝试,我的确没有去掉$b$,那么我只要从之前的状态里挑最优不也可以么,交上去之后发现的确可以(妥妥$WA$)。这就很头疼,也证明我的想法是不对的,因为在有$b$的前提下,你按照原来那种判断两点间斜率的方法去决定取哪个点的方法并不能确定哪个点是最优的,比如下图:
这个时候$C$是不满足要求的点,我没有去掉,之后我从$A,B,C,D$中挑选最优的点去更新$E$点,$E$对应的斜率$rate$是绿色的那条线,从最下面开始扫描,$AB$的斜率小于$rate$,扫到$B$这里停下,由于$BC$斜率大于$rate$,还是在$B$这里,之后$CD$的斜率比$rate$小,那就扫到$D$这里停下,然后通过$D$更新$E$点。但是你会发现其实$B$点比$D$点更优,这样选是不对的。但是如果我先把$C$点去掉,那么通过$AB,BD$的斜率去选择点,你会发现得到的$E$点是最优的
所以结果就是,正是因为满足要求的点之间的斜率是单调递增的才能保证每次得到的$f[i]$为最优,并且这样计算$f[i]$的确效率很高~
附上错误的代码(T_T):
#include <cstdio>
#define ll long long
#define empty (head>=tail)
const int maxn = 1e6+10;
ll n, head, tail, j;
ll x[maxn], p[maxn], c[maxn];
ll q[maxn], s[maxn], g[maxn], f[maxn];
inline long double X(ll i) {return s[i];}
inline long double Y(ll i) {return f[i]+g[i];}
inline long double rate(ll j,ll k) {return (Y(k)-Y(j))/(X(k)-X(j));}
int main()
{
scanf("%lld", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld%lld%lld", &x[i], &p[i], &c[i]);
s[i] = s[i-1]+p[i], g[i] = g[i-1]+p[i]*x[i];
}
head = tail = 1;
for (int i = 1; i <= n; i++) {
int l = head, r = tail;
while(!empty&&l<r) {
if(rate(q[l],q[l+1])<x[i]) head = l+1;
l++;
}
j = q[head]; f[i] = f[j]+x[i]*(s[i-1]-s[j])-(g[i-1]-g[j])+c[i];
q[++tail] = i;
}
printf("%lld\n", f[n]);
}
参考文章:
https://www.cnblogs.com/1625--H/p/11267043.html
[ZJOI2007]仓库建设(斜率dp优化)的更多相关文章
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化
[BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...
- bzoj 1096: [ZJOI2007]仓库建设 斜率優化
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2242 Solved: 925[Submit][Statu ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- P2120 [ZJOI2007]仓库建设 斜率优化dp
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...
- [ZJOI2007]仓库建设(斜率优化)
L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到气象部 ...
随机推荐
- spring cache 学习——@CachePut 使用详解
1. 功能说明 当需要在不影响方法执行的情况下更新缓存时,可以使用 @CachePut,也就是说,被 @CachePut 注解的缓存方法总是会执行,而且会尝试将结果放入缓存(当然,是否真的会缓存还跟一 ...
- Netty学习之IO模型
目录 1.1 同步.异步.阻塞.非阻塞 同步 VS 异步 同步 异步 阻塞 VS 非阻塞 阻塞 非阻塞 举例 ...
- Rancher首席架构师解读Fleet:它何以管理百万集群?
作者简介 Darren Shepherd,Rancher Labs联合创始人及首席架构师.在加入Rancher之前,Darren是Citrix的高级首席工程师,他在那里从事CloudStack.Ope ...
- LeetCode200 岛屿的个数
给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 1: 输入: ...
- selenium自动化 | 借助百度AI开放平台识别验证码登录职教云
#通过借助百度AI开放平台识别验证码登录职教云 from PIL import Image from aip import AipOcr import unittest # driver.get(zj ...
- 【Linux】vim小技巧,如何批量添加或者删除注释
环境:centos vim或者vi都可以 例如文件如下: aaa bbb ccc ddd 有四行文件,想将前三行都添加注释 先查看行数: :set nu 可以这样做: :1,3s%^%#% 即可,如 ...
- 【MySQL】ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing
今天上午遇到了一个问题,新创建的mysql5.7的数据库,由于初始化有点问题,没有给root密码,用了免密码登录. 但是,修改了root密码之后,把配置中的免密登录的配置注释掉后,重启服务.服务正常启 ...
- disfunc绕过
绕过DisFunc的常见小技巧 解析webshell命令不能执行时的三大情况 一是 php.ini 中用 disable_functions 指示器禁用了 system().exec() 等等这类命令 ...
- C# 请求被中止: 未能创建 SSL/TLS 安全通道。 设置SecurityProtocol无效
今天为了获取一张图片,用了一段代码: ServicePointManager.ServerCertificateValidationCallback += new RemoteCertificateV ...
- 核酸检测:让我明白AQS原理
春节越来越近了,疫情也越来越严重,但挡不住叫练携一家老小回老家(湖北)团聚的冲动.响应国家要求去我们做核酸检测了. 独占锁 早上叫练带着一家三口来到了南京市第一医院做核酸检测,护士小姐姐站在医院门口拦 ...