前言:学长讲的太神了;自己还能推出来DP式子,挺开心。

--------------------------

题目链接

题目大意:给定一张含有$n$个结点$m$条边的无向连通图。现在聪聪在点$s$,可可在点$t$。每秒钟可可能等概率走向相邻的结点或原地不动,而聪聪总是向更靠近可可的地方沿最短路走两步(如果走一步就能找到可可就不往下走了)。问聪聪找到可可的时间的期望。$n,m\leq 1000$

----------------------

我们首先解决第一个限制条件:沿最短路走。

假设聪聪目前在点$i$,可可目前在点$j$,聪聪下一步的走位是$next[i][j]$。

看到数据范围,我们可以暴力把每个点的单源最短路径求出来,然后枚举距离点$i$距离为$1$的点$k$。如果$dis[i][j]-1==dis[k][j]$,那么$next[i][j]=k$。

然后进行期望DP。这里我们采用记忆化搜索。设$f[i][j]$表示目前聪聪在点$i$,可可在点$j$时的期望。设点的出度为$du[]$。然后分类讨论:

  1.如果$i$和$j$同点,那么$f[i][j]=0$。

  2.如果聪聪能够走一步或两步到达点$j$,那么$f[i][j]=1$。

  3.如果可可呆在原地不动,那么对答案的贡献有$(f[next[next[i][j]][j]][j]+1)*\frac{1}{du[j]+1}$。(一共有$du[j]+1$种走法,包含原地不动)

  4.如果可可走向相邻的点,那么对答案的贡献有$\sum (f[next[next[i][j]][j]][to]+1)*\frac{1}{du[j]+1}$。(枚举$to$)

所以总的DP方程为$f[i][j]=\frac{f[next[next[i][j]][j]][j]+\sum f[next[next[i][j]][j]][to]}{du[j]+1}+1$

最后输出$dfs(s,t)$即可。时间复杂度$O(n^2)$。

代码:

#include<bits/stdc++.h>
using namespace std;
int dis[][],next[][],du[],vis[];
int n,m,s,t,visit[][];
double f[][];
int head[],cnt;
struct node
{
int next,to,dis;
}edge[];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void add(int from,int to,int dis)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
}
inline void spfa(int x)
{
queue<int> q;
dis[x][x]=;vis[x]=;q.push(x);
while(!q.empty())
{
int now=q.front();q.pop();vis[now]=;
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (dis[x][to]>dis[x][now]+edge[i].dis)
{
dis[x][to]=dis[x][now]+edge[i].dis;
if (!vis[to]) q.push(to),vis[to]=;
}
}
}
}
double dfs(int u,int v)
{
if (visit[u][v]) return f[u][v];
if (u==v) return ;
int fir=next[u][v];
int sec=next[fir][v];
if (fir==v||sec==v) return ;
f[u][v]=;
for (int i=head[v];i;i=edge[i].next)
{
int to=edge[i].to;
f[u][v]+=dfs(sec,to)/(double)(du[v]+);
}
f[u][v]+=dfs(sec,v)/(double)(du[v]+);
visit[u][v]=;
return f[u][v];
}
int main()
{
n=read(),m=read(),s=read(),t=read();
for (int i=;i<=m;i++)
{
int x=read(),y=read();
add(x,y,);
add(y,x,);
du[x]++,du[y]++;
}
for (int i=;i<=n;i++)
for (int j=;j<=n;j++) dis[i][j]=next[i][j]=0x3f3f3f3f;
for (int i=;i<=n;i++) spfa(i);
for (int i=;i<=n;i++)
for (int j=head[i];j;j=edge[j].next)
{
int to=edge[j].to;
for (int k=;k<=n;k++)
if (dis[i][k]-==dis[to][k]) next[i][k]=min(next[i][k],to);
}
printf("%.3lf",dfs(s,t));
return ;
}

【NOI2005】聪聪与可可 题解(最短路+期望DP)的更多相关文章

  1. BZOJ 1415: [Noi2005]聪聪和可可( 最短路 + 期望dp )

    用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), ...

  2. BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp

    题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  3. BZOJ5197:[CERC2017]Gambling Guide(最短路,期望DP)

    Description 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易 ...

  4. 【BZOJ】1415: [Noi2005]聪聪和可可【期望】【最短路】【记忆化搜索】

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2335  Solved: 1373[Submit][Stat ...

  5. 洛谷 P4206 [NOI2005]聪聪与可可 题解

    题面 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每 ...

  6. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  7. 【bzoj1415】[Noi2005]聪聪和可可 期望记忆化搜索

    题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  8. BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】

    题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  9. BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs

    BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2 ...

随机推荐

  1. Django---drf第一天

    目录 1 序列化组件介绍 2 简单使用 3 序列化类的字段类型 4 序列化字段选项 5 序列化组件修改数据 6 read_only和write_only 7查询所有 8 新增数据 9 删除一个数据 1 ...

  2. SQL批量插入数据【万级】

    1.每4000条插入一次 for (int i = 0; i < dt.Rows.Count; i++) { IsTBProductForStockInfo model = new IsTBPr ...

  3. [网鼎杯 2020 青龙组]AreUSerialz

    题目分析 <?php include("flag.php"); highlight_file(FILE); class FileHandler { protected $op ...

  4. java 数据结构(八):Iterator接口与foreach循环

    1.遍历Collection的两种方式:① 使用迭代器Iterator ② foreach循环(或增强for循环)2.java.utils包下定义的迭代器接口:Iterator2.1说明:Iterat ...

  5. 数据可视化之分析篇(四)PowerBI分析模型:产品关联度分析

    https://zhuanlan.zhihu.com/p/64510355 逛超市的时候,面对货架上琳琅满目的商品,你会觉得这些商品的摆放,或者不同品类的货架分布是随机排列的吗,当然不是. 应该都听说 ...

  6. Python面向对象03 /继承

    Python面向对象03 /继承 目录 Python面向对象03 /继承 1. 初识继承 2. 单继承 3. 多继承 4. 总结 1. 初识继承 概念:专业角度:如果B类继承A类,B类就称为子类,派生 ...

  7. log4j系统日志(转载)

    地址:http://www.codeceo.com/log4j-usage.html 日志是应用软件中不可缺少的部分,Apache的开源项目log4j是一个功能强大的日志组件,提供方便的日志记录.在a ...

  8. tomcat内容总结

    tomcat的安装以及配置环境变量 1.tomcat的官网下载地址:http://tomcat.apache.org/ tomcat有很多版本,有解压版 和 安装版,还分windows (还分为32位 ...

  9. Python3 生成器解析

    第6章 函数 6.1 函数的定义和调用 6.2 参数传递 6.3 函数返回值 6.4 变量作用域 6.5 匿名函数(lambda) 6.6 递归函数 6.7 迭代器 6.8 生成器 6.9 装饰器 6 ...

  10. .Net Core缓存组件(MemoryCache)【缓存篇(二)】

    一.前言 .Net Core缓存源码 1.上篇.NET Core ResponseCache[缓存篇(一)]中我们提到了使用客户端缓存.和服务端缓存.本文我们介绍MemoryCache缓存组件,说到服 ...