全网都是矩阵快速幂,我只会倍增DP

其实这题与 AcWing 345. 牛站 还是比较像的,那题可以矩阵快速幂 / 倍增,这题也行。

先 \(Floyd\) 预处理两点之间不用魔法最短距离 \(d_{i, j}\) 复杂度 \(O(n^3)\)

然后预处理两点之间至多用一个魔法的最短距离 \(w_{i, j}\),初始为 \(w_{i, j} = d_{i, j}\),枚举 \(i, j\) 和一条边 \((u, v, t)\) \(w_{i, j} = \min(d[i][u] - t + d[v][j])\),复杂度 \(O(n^2m)\)

然后把 \(w\) 数组当做邻接矩阵的新图,所以问题变成了走恰好 \(k\) 条边的最短路(可以理解多走不会变差,因为满足 \(w_{i, i} <= 0\)),这个问题就是 AcWing 345. 牛站 ,具体做法看 AcWing 345. 牛站的倍增 DP 思路,复杂度 \(O(n^3 \log K)\)

注意细节,走 \(0\) 条边的最短路是 \(d_{1, n}\),注意 \(f\) 的初始值。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std; typedef long long LL; const int N = 105, M = 2505, L = 20;
const LL INF = 1e18; int n, m, K, l;
LL d[N][N], w[N][N], g[L][N][N], f[N], t[N]; struct E{
int u, v, w;
} e[M]; int main() {
memset(g, 0x3f, sizeof g);
scanf("%d%d%d", &n, &m, &K);
l = log2(K);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) if (i != j) d[i][j] = INF;
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
d[e[i].u][e[i].v] = min(d[e[i].u][e[i].v], (LL)e[i].w);
}
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
w[i][j] = d[i][j];
for (int k = 1; k <= m; k++)
w[i][j] = min(w[i][j], d[i][e[k].u] - e[k].w + d[e[k].v][j]);
g[0][i][j] = w[i][j];
}
}
for (int c = 1; c <= l; c++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
g[c][i][j] = min(g[c][i][j], g[c - 1][i][k] + g[c - 1][k][j]);
for (int i = 1; i <= n; i++) f[i] = d[1][i];
for (int c = 0; c <= l; c++) {
if (K >> c & 1) {
for (int i = 1; i <= n; i++) t[i] = f[i];
memset(f, 0x3f, sizeof f);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) f[i] = min(f[i], t[j] + g[c][j][i]);
}
}
printf("%lld\n", f[n]);
return 0;
}

NOI Online #1 入门组 魔法的更多相关文章

  1. P6474 [NOI Online #2 入门组] 荆轲刺秦王

    P6474 [NOI Online #2 入门组] 荆轲刺秦王 bfs+差分+卡常 本来我其实是场内选手,但是因为记错提交时间,晚了半小时才交,交不上了,就自动降级为了场外选手 题面复杂,不简述了 首 ...

  2. P7473 [NOI Online 2021 入门组] 重力球

    P7473 [NOI Online 2021 入门组] 重力球 题意 给你一个正方形平面,某些位置有障碍,对于平面上两个球,每次你可以改变重力方向使两个球下落到最底端,求使两个球位置重合的最小改变重力 ...

  3. NOI ONLINE 入门组 魔法 矩阵快速幂

    做了这道题我才发现NOI入门组!=NOIP普及组 题目链接 https://www.luogu.com.cn/problem/P6190 题意 给出一张有向图,你有K次机会可以反转一条边的边权,即让它 ...

  4. 洛谷 P6189 - [NOI Online #1 入门组]跑步(根号分治+背包)

    题面传送门 题意: 求有多少个数列 \(x\) 满足: \(\sum x_i=n\) \(x_i\geq x_{i+1}\) 答案对 \(p\) 取模. ...你确定这叫"入门"组 ...

  5. NOI Online 2021 入门组 T1

    Description 题目描述 Alice.Bob 和 Cindy 三个好朋友得到了一个圆形蛋糕,他们打算分享这个蛋糕. 三个人的需求量分别为 \(a, b, c\),现在请你帮他们切蛋糕,规则如下 ...

  6. [NOI 2020 Online] 入门组T1 文具采购(洛谷 P6188)题解

    原题传送门 题目部分:(来自于考试题面,经整理) [题目描述] 小明的班上共有 n 元班费,同学们准备使用班费集体购买 3 种物品: 1.圆规,每个 7 元. 2.笔,每支 4 元. 3.笔记本,每本 ...

  7. [题解] [NOI Online 2021 入门组 T3] 重力球

    题目大意 在一个 \(n\times n\) 的矩形中,题目会给出 \(m\) 个障碍物.有两个小球,你可以选定四个方向(上下左右)的其中一个,小球会朝着这四个方向一直滚动,直到遇到障碍物或是矩形的边 ...

  8. P6189 [NOI Online #1 入门组] 跑步 (DP/根号分治)

    (才了解到根号分治这样的妙方法......) 将每个数当成一种物品,最终要凑成n,这就是一个完全背包问题,复杂度O(n2),可以得80分(在考场上貌似足够了......) 1 #include < ...

  9. 【NOI Online 2020】入门组 总结&&反思

    前言: 这次的NOI Online 2020 入门组我真的无力吐槽CCF的网站了,放段自己写的diss的文章,供一乐 如下:(考试后当天晚上有感而发) 今天是个好日子!!!(我都经历了什么...... ...

随机推荐

  1. Socket bind系统调用简要分析

    主要查看linux kernel 源码:Socket.c 以及af_inet.c文件 1.1 bind分析 #include <sys/types.h> /* See NOTES */#i ...

  2. 重点思维导图------redis深度历险

  3. CSP-S 2020 Travels

    CSP-S 2020 Travels DAY 0 I hit the board in the morning before departure The rest of the time is dec ...

  4. VS2017新建MVC+ORM中的LinqDb访问数据库项目

    1.前提概述 ORM对象关系映射(Object-Relational Mapping)是一种程序技术,用于实现面向对象编程语言里不同类型系统的数据之间的转换.从效果上说,它其实是创建了一个可在编程语言 ...

  5. linux全局和个人配置文件说明

    1.bash配置文件: 1).全局(bash的配置文件) 有 /etc/profile   /etc/profile.d/*  与 /etc/bashrc 其实都是bash这个程序启动的时候会读取配置 ...

  6. 工作一年半被裁掉,机缘巧合拿到阿里P7offer,得亏我看过这份“突击”面试宝典

    前言 不论是校招还是社招都避免不了各种⾯试.笔试,如何去准备这些东⻄就显得格外重要.不论是笔试还是⾯试都是有章可循的,我这个"有章可循"说的意思只是说应对技术⾯试是可以提前准备,所 ...

  7. 仅一年工作经验成功跳槽字节跳动,腾讯并拿到字节的offer,全靠这份面经!

    前言 前几天由于工作的原因一直没怎么看私信,昨天在整理私信的时候看到了一个粉丝给我疯狂私信想要我帮忙整理一份大厂面经,说自己工作也有几年了想跳槽冲刺一下,但是不知道该怎么做好前期准备.我看到这个粉丝也 ...

  8. Mockito 结合 Springboot 进行应用测试

    Spring Boot可以和大部分流行的测试框架协同工作:通过Spring JUnit创建单元测试:生成测试数据初始化数据库用于测试:Spring Boot可以跟BDD(Behavier Driven ...

  9. 方格取数(number) 题解(dp)

    题目链接 题目大意 给你n*m个方格,每个格子有对应的值 你从(1,1)出发到(n,m)每次只能往下往上往右,走过的点则不能走 求一条路线使得走过的路径的权值和最大 题目思路 如果只是简单的往下和往右 ...

  10. redis 一致性分析

    转载: https://blog.csdn.net/qq32933432/article/details/108690254