LINK:游戏

还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻。

二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换。

设\(f_i\)表示至多的方案数 \(g_i\)表示恰好的方案。

则有 \(f_n=\sum_{i=0}^nC(n,i)\cdot g_i\) 根据二项式反演则有 \(g_n=\sum_{i=0}^n(-1)^{n-i}\cdot C(n,i)\cdot f_i\)

设\(f_i\)表示至少的方案数 \(g_i\)表示恰好的方案。

则有 \(f_k=\sum_{i=k}^nC(i,k)\cdot g_i\) 根据二项式反演则有 \(g_k=\sum_{i=k}^n(-1)^{i-k}\cdot C(i,k)\cdot f_i\)

剩下的树形dp还是很容易想的。

题目意思是在所有的局面下 不为平局的状态数量。

爆搜复杂度过高。容易发现每次匹配都是在自己和自己的子树内部进行匹配的。

而且匹配是没有顺序的所以对于某种匹配我们直接让其和其子树内部的东西进行匹配即可。

设状态 f[i][j]表示以i为根的子树内部有j个非平局的状态数。

转移很简单 不过这里面有一个小trick 注意枚举到自己的子树大小 还有不要先加上儿子的数量再枚举 这样复杂度都不是n^2的。

只是枚举到自己的子树大小之后 可以发现任意两个点对在自己的LCA处被枚举了一遍 所以复杂度n^2.

最后有一个自己跟自己匹配的决策转移。

值得一题的是 对于有j个非平局的 剩下的点还没有被匹配 显然 方案数为 (m-j)!.

到这里 就会发现端倪 这个f状态有问题 其不是恰好 而是至少。

求出所有的f值之后套一个二项式反演就可以得到至少得方案数了。

const ll MAXN=5010,G=3;
ll n,len ;
char a[MAXN];
ll fac[MAXN],inv[MAXN];
ll sz[MAXN][2],w[MAXN],f[MAXN][MAXN];//f[i][j]表示以i为根的子树内至少有j个非平衡的回合数的情况数
ll lin[MAXN],g[MAXN],ver[MAXN<<1],nex[MAXN<<1];
inline void add(ll x,ll y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline void dfs(ll x,ll fa)
{
sz[x][a[x]-'0']=1;
f[x][0]=1;
go(x)
{
if(tn==fa)continue;
dfs(tn,x);
ll w1=min(sz[x][1],sz[x][0]);
ll w2=min(sz[tn][1],sz[tn][0]);
for(ll j=0;j<=w1;++j)
for(ll k=0;k<=w2;++k)g[j+k]=(g[j+k]+f[x][j]*f[tn][k])%mod;
sz[x][1]+=sz[tn][1];
sz[x][0]+=sz[tn][0];
rep(0,w1+w2,j)f[x][j]=g[j],g[j]=0;
}
ll w1=min(sz[x][0],sz[x][1]);
fep(w1-1,0,i)f[x][i+1]=(f[x][i+1]+f[x][i]*(sz[x][(a[x]-'0')^1]-i))%mod;
}
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline ll C(ll a,ll b){if(a<b)return 0;return fac[a]*inv[b]%mod*inv[a-b]%mod;}
inline void calc()
{
rep(0,n/2,i)
rep(i,n/2,j)w[i]=(w[i]+((((j-i)&1))?-1:1)*C(j,i)*g[j])%mod;
}
signed main()
{
freopen("match.in","r",stdin);
freopen("match.out","w",stdout);
gt(n);gc(a);fac[0]=fac[1]=1;
rep(2,n,i)
{
ll get(x),get(y);
fac[i]=fac[i-1]*i%mod;
add(x,y);add(y,x);
}
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
dfs(1,0);
rep(0,n/2,i)g[i]=f[1][i]*fac[n/2-i]%mod;
calc();
//putl(f[1][1]);
rep(0,n/2,i)printf("%lld ",((w[i]+mod)%mod));
return 0;
}

NOI Online 游戏 树形dp 广义容斥/二项式反演的更多相关文章

  1. 青云的机房组网方案(简单+普通+困难)(虚树+树形DP+容斥)

    题目链接 1.对于简单的版本n<=500, ai<=50 直接暴力枚举两个点x,y,dfs求x与y的距离. 2.对于普通难度n<=10000,ai<=500 普通难度解法挺多 ...

  2. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  3. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  4. 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)

    [传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...

  5. LuoguP3047 [USACO12FEB]附近的牛Nearby Cows(树形DP,容斥)

    \[f[u][step] = \begin{cases} C[u] & step = 0 \\ (\sum{f[v][step - 1]}) - f[u][step - 2] \cdot (d ...

  6. 【BZOJ3622】已经没有什么好害怕的了(动态规划+广义容斥)

    点此看题面 大致题意: 有\(n\)个糖果和\(n\)个药片,各有自己的能量.将其两两配对,求糖果比药片能量大的组数恰好比药片比糖果能量大的组数多\(k\)组的方案数. 什么是广义容斥(二项式反演) ...

  7. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  8. P2016 战略游戏——树形DP大水题

    P2016 战略游戏 树形DP 入门题吧(现在怎么是蓝色标签搞不懂): 注意是看见每一条边而不是每一个点(因为这里错了好几次): #include<cstdio> #include< ...

  9. P4491 [HAOI2018]染色 广义容斥 NTT 生成函数

    LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...

随机推荐

  1. laravel7使用auth进行用户认证

    原文地址:https://www.wjcms.net/archives/laravel7使用auth进行用户认证 laravel7 版本移除了 auth,大家都知道以前版本是直接使用 php arti ...

  2. django中的懒加载机制

    懒加载在前端中的意义: 懒加载的主要目的就是作为服务器前端的优化,减少请求次数或者延迟请求数. 实现原理: 先加载一部分数据,当触发某个条件时利用异步加载剩余的数据,新得到的数据不会影响原有数据的显示 ...

  3. Java实现上传文件到指定服务器指定目录(ChannelSftp实现文件上传下载)

    package com.tianyang.task.utils; import java.io.File;import java.io.FileInputStream;import java.io.I ...

  4. linux常用命令 总结

    最最常用的快捷键,Tab 键 ,自动补全功能, / 根目录 man 帮助手册:man cd ,查看cd的用法! cd 进入目录:ls -l 列表查看文件详细信息:pwd 当前路径: cp 复制 .rm ...

  5. Scala 基础(一):各平台安装

    一.win7环境安装1.安装jdk直接双击,安装到想要的环境目录2.修改环境变量2.1新建系统变量 JAVA_HOME 输入jdk安装目录 2.2 修改PATH修改PATH:%JAVA_HOME%\b ...

  6. 04 flask源码剖析之LocalStack和Local对象实现栈的管理

    04 LocalStack和Local对象实现栈的管理 目录 04 LocalStack和Local对象实现栈的管理 1.源码入口 1. flask源码关于local的实现 2. flask源码关于l ...

  7. java 基本语法(十) 数组(三) 二维数组

    1.如何理解二维数组? 数组属于引用数据类型数组的元素也可以是引用数据类型一个一维数组A的元素如果还是一个一维数组类型的,则,此数组A称为二维数组. 2.二维数组的声明与初始化 正确的方式: int[ ...

  8. 06 flask源码剖析之路由加载

    06 Flask源码之:路由加载 目录 06 Flask源码之:路由加载 1.示例代码 2.路由加载源码分析 1.示例代码 from flask import Flask app = Flask(__ ...

  9. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

  10. 据说比Spring快44倍的web开发框架,不妨试试

    该框架称为:**light-4j **.官方网站简介:A fast, lightweight and more productive microservices framework.很简单,翻译过来就 ...