牛客练习赛71 C.数学考试 (DP,容斥原理)
题意:RT
题解:先对\(p\)排个序,然后设\(dp[i]\)表示前\(i-1\)个\(p[i]\)满足条件但是\(p[i]\)不满足,即在\([1,p[i]]\)中不存在从\(p[1]\)到\(p[i-1]\)[的排列,比如说\(p[1]=1\),\(p[2]=2\),\(p[3]=3\),则\(dp[4]\)中一定不能存在\([1,x,x,x](p[1])\),\([1,2,x,x](p[2])\),\([1,2,3,x]\)这样的序列,因为这些对于\(p[1]\)到\(p[i-1]\)存在不满足的情况,但是像\([4,3,2,1]\)这样的就可以,所以我们按这个思路想,先假设\(dp[i]=A_{p[i]}^{p[i]}\),可以推出公式,\(dp[i]=dp[i]-\sum_{j=1}^{i-1}(dp[j]*(fac[p[i]-p[j]]))\),求出所有的\(dp\)数组之后,我们就可以计算答案了,和求\(dp\)的公式类似,我们用所有的情况\(n!\)减去每个独立的限制条件\(p[i]\)的情况,所以\(ans=n!-\sum_{i=1}^{n}(dp[i]*(fac[n-p[i]]))\).记得取模.
代码:
int n,m;
ll p[N];
ll fac[N];
ll dp[N]; int main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>n>>m;
fac[0]=1;
for(int i=1;i<=m;++i){
cin>>p[i];
}
for(int i=1;i<=n;++i){
fac[i]=fac[i-1]*i%mod;
}
sort(p+1,p+1+m);
dp[1]=fac[p[1]]; for(int i=2;i<=m;++i){
dp[i]=fac[p[i]];
for(int j=1;j<i;++j){
dp[i]=(dp[i]-dp[j]*fac[p[i]-p[j]])%mod;
}
} ll ans=fac[n]; for(int i=1;i<=m;++i){
ans=(ans-dp[i]*fac[n-p[i]])%mod;
}
cout<<(ans%mod+mod)%mod<<endl;
return 0;
}
牛客练习赛71 C.数学考试 (DP,容斥原理)的更多相关文章
- 牛客练习赛52 | C | [烹饪] (DP,裴蜀定理,gcd)
牛客练习赛52 C 烹饪 链接:https://ac.nowcoder.com/acm/contest/1084/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 327 ...
- 牛客练习赛26B 烟花 (概率DP)
链接:https://ac.nowcoder.com/acm/contest/180/B 来源:牛客网 烟花 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5 ...
- 牛客练习赛71 数学考试 题解(dp)
题目链接 题目大意 要你求出有多少个长度为n的排列满足m个限制条件 第i个限制条件 p[i]表示前 p[i]个数不能是1-p[i]的排列 题目思路 这个感觉是dp但是不知道怎么dp 首先就是要明白如果 ...
- 牛客练习赛79E-小G的数学难题【dp,单调队列】
正题 题目链接:https://ac.nowcoder.com/acm/contest/11169/E 题目大意 给出\(n\)个三元组\((a_i,b_i,c_i)\). 要求选出一个集合\(S\) ...
- 牛客练习赛37-筱玛的字符串-DP递推
筱玛的字符串 思路 :dp [ i ] [ j ] [ 3 ] 分别代表到第 i 位时 左括号比右括号多 j ,后面有三个状态 分别表示当前位置 S3的字符 是正在反转的,还是 反转完成的,还是没有反 ...
- 牛客练习赛69 火柴排队 题解(dp)
题目链接 题目大意 给你一个长为n(n<=5e3)的数组a.随机使得k个元素增加d.要你求多大的概率使得,这些数组元素的相对大小不发生改变 输出 n 行每行一个整数,第 i 行的整数表示 k=i ...
- 牛客练习赛39 C 流星雨 (概率dp)
题意: 现在一共有n天,第i天如果有流星雨的话,会有wi颗流星雨. 第1天有流星雨的概率是p1. 如果第i−1 (i≥2)天有流星雨,第i天有流星雨的可能性是pi+P,否则是pi. 求n天后,流星雨颗 ...
- 牛客练习赛48 C 小w的糖果 (数学,多项式,差分)
牛客练习赛48 C 小w的糖果 (数学,多项式) 链接:https://ac.nowcoder.com/acm/contest/923/C来源:牛客网 题目描述 小w和他的两位队友teito.toki ...
- 牛客练习赛53 A 超越学姐爱字符串 (DP)
牛客练习赛53 超越学姐爱字符串 链接:https://ac.nowcoder.com/acm/contest/1114/A来源:牛客网 超越学姐非常喜欢自己的名字,以至于英文字母她只喜欢" ...
随机推荐
- Docker 镜像基础(三)
基于Dockerfile制作yum版本nginx镜像 [root@node-2 ~]# mkdir /opt/nginx [root@node-2 ~]# cd /opt/nginx/ ## 创建Do ...
- Netty源码解析 -- FastThreadLocal与HashedWheelTimer
Netty源码分析系列文章已接近尾声,本文再来分析Netty中两个常见组件:FastThreadLoca与HashedWheelTimer. 源码分析基于Netty 4.1.52 FastThread ...
- 【Oracle】查看表空间是否为自动扩展
查看指定的表空间是否为自动扩展 SQL> select file_name,autoextensible,increment_by from dba_data_files where tab ...
- P1140 相似基因(字符串距离,递推)
题目链接: https://www.luogu.org/problemnew/show/P1140 题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了44种核苷酸,简记作A,C,G,TA,C, ...
- 跨平台导PDF,结合wkhtmltopdf很顺手
前言 好东西要分享,之前一直在使用wkhtmltopdf进行pdf文件的生成,常用的方式就是先安装wkhtmltopdf,然后在程序中用命令的方式将对应的html生成pdf文件,简单而且方便:但重复的 ...
- [系列] Go - 基于 GORM 获取当前请求所执行的 SQL 信息
前言 为了便于精准排查问题,需要将当前的请求信息与当前执行的 SQL 信息设置对应关系记录下来,记录的 SQL 信息包括: 执行 SQL 的当前时间: 执行 SQL 的文件地址和行号: 执行 SQL ...
- 24V转3.3V芯片,同步降压调节器
PW2312是一个高频,同步,整流,降压,开关模式转换器与内部功率MOSFET.它提供了一个非常紧凑的解决方案,以实现1.5A的峰值输出电流在广泛的输入电源范围内,具有良好的负载和线路调节. PW23 ...
- 在HTML中改变input标签中的内容
在HTML中改变input标签的内容 1.使用js自带的方法: document.getElementById('roadName').value='武汉路';//通过标签选择器来选择标签,然后设置值 ...
- selenium元素等待的三种方法
1.强制等待sleep() 使用方法:sleep(X),等待X秒后,进行下一步操作. 使用最简单的一种办法就是强制等待sleep(X),强制让浏览器等待X秒,不管当前操作是否完成,是否可以进行下一步操 ...
- 为什么从REST转向gRPC 需要流式传输搜索结果,也就是在有第一批结果时就开始传输
https://mp.weixin.qq.com/s/aEO3Y8SkObNgfQU3z8sH2w 我们为什么从REST转向gRPC 原创 Levin Fritz InfoQ 2019-06-23 作 ...