Bézout恒等式
写在前面:
记录了个人的学习过程,同时方便复习
整理自网络
非原创部分会标明出处
目录
|
结论
(Bézout / 裴蜀 / 贝祖 / 比舒)
In elementary number theory, Bézout's identity (also called Bézout's lemma) is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d Then, there exist integers x and y such that ax + by = d More generally, the integers of the form ax + by are exactly the multiples of d ——wikipedia |
译: 在初等数论中,Bézout恒等式(也称为Bézout引理)是下列引理: Bézout恒等式: 设a和b为具有最大公因数d的整数 存在整数x和y,使得ax+by=d 即ax+by恰好是d的倍数 |
wikipedia上说的很清楚,就不再重复说了
证明
(某一种证法)
有a,b∈Z*
记d == gcd(a,b),对ax + by == d,两边同时除以d,可得(a1)x + (b1)y == 1,其中gcd(a1,b1) == 1
转证(a1)x + (b1)y == 1,由带余除法:
① (a1) == (q1)(b1) + (r1),其中0 < r1 < b1
② (b1) == (q2)(r1) + (r2),其中0 < r2 < r1
③ (r1) == (q3)(r2) + (r3),其中0 < r3 < r2
.....
④ (rn-4) == (qn-2)(rn-3) + (rn-2)
⑤ (rn-3) == (qn-1)(rn-2) + (rn-1)
⑥ (rn-2) == (qn)(rn-1) + (rn)
⑦ (rn-1) == (qn+1)(rn) + 1
故,由⑦和⑥推出(rn-2)An-2 + (rn-1)Bn-1 == 1
再结合⑤推出(rn-3)An-3 + (rn-2)Bn-2 == 1
再结合④推出(rn-4)An-4 + (rn-3)Bn-3 == 1
.....
再结合③推出(r1)A1 + (r2)B2 == 1
再结合②推出(b1)A0 + (r1)B0 == 1
再结合①推出(a1)x + (b1)y == 1
证毕
——bia度百科
拓展
- n个整数间
设有a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1 + x2*a2 + ... + xn*an == d
——bia度百科
Bézout恒等式的更多相关文章
- 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式
基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.
- CF #404 (Div. 2) D. Anton and School - 2 (数论+范德蒙恒等式)
题意:给你一个由'('和')'组成的字符串,问你有多少个子串,前半部分是由'('组成后半部分由')'组成 思路:枚举这个字符串中的所有'('左括号,它左边的所有'('左括号的个数为num1,它的右边的 ...
- 朱世杰恒等式的应用-以CF841C为例
题目大意 Codeforces 841C Leha and Function. 令\(F(n,k)\)为在集合\(\{x|x \in [1,n]\}\)中选择一个大小为k的子集,最小元素的期望值. 给 ...
- Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]
题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...
- MT【221】几个常用的多元恒等式
1.$\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}{a_ib_j}=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}{a_j ...
- MT【208】埃尔米特恒等式
设$S=\sum\limits_{k=1}^{+\infty}[\dfrac{116+3^{k-1}}{3^k}]\\T=\sum\limits_{k=1}^{+\infty}[\dfrac{116+ ...
- MT【35】用复数得到的两组恒等式
特别的,当$r\rightarrow1^{-}$时有以下两个恒等式: 第二个恒等式有关的自主招生试题参考博文MT[31]傅里叶级数为背景的三角求和 评:利用两种展开形式得到一些恒等式是复数里经常出现的 ...
- hdu1799-循环多少次?-(组合恒等式)
循环多少次? Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- python练习笔记——组合恒等式
排列组合结合恒等式 已知从n个物品中取出m个,则存在一个组合恒等式. C(n, m)=C(n, n-m)=C(n-1, m-1)+C(n-1,m) 其中C(n,0) = 1 求:从5取3 和 10 取 ...
随机推荐
- 【Java基础】Eclipse 和数组
Eclipse 和数组 Eclipse 安装和使用 ... 数组的概述 数组(Array):是多个相同类型数据按一定顺序排列的集合,并使用一个名字命名,并通过编号的方式对这些数据进行统一管理. 数组相 ...
- Openstack Keystone 认证服务(四)
Openstack Keystone 认证服务(四) keystone 的安装完全依赖ocata的源, 如果没有建议自己搭建. 否则用的源不对会产生各种奇葩问题. 创建keystone库和用户: ## ...
- (十五)xml模块
xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要 ...
- 【Java】一个简单的Java应用程序
简单记录,Java 核心技术卷I 基础知识(原书第10 版) 一个简单的Java应用程序"Hello, World!" Hello, World! Goodbye,World! 一 ...
- kubernets之从应用访问pod元数据以及其他资源
一 downwardAPI的应用 1.1 前面我们介绍了如何通过configmap以及secret将配置传入到pod的容器中,但是传递的这些都是预先能够安排和只晓得,对于那些只有当pod创建起来之 ...
- Test typora
目录 0. test 0.5 easy test 1. problem 1 2. problem 2 3. problem 3 import numpy as np import matplotlib ...
- 大文件上传FTP
需求 将本地大文件通过浏览器上传到FTP服务器. 原有方法 将本地文件整个上传到浏览器,然后发送到node服务器,最后由node发送到FTP服务器. 存在问题 浏览器缓存有限且上传速率受网速影响,当文 ...
- 1 分钟上手,在容器中运行 Visual Studio Code
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers 这个插件允许我们在容器中运 ...
- 使用 gRPC-UI 调试.NET 5的gPRC服务
在上一篇文章中,我介绍了gRPCurl一个命令行工具,该工具可用于测试gRPC服务的端点,在本文中,我将向您介绍 gRPC-ui, 它可以作为Web工具使用,有点像Postman,但用于gRPC AP ...
- C# 中的动态类型
翻译自 Camilo Reyes 2018年10月15日的文章 <Working with the Dynamic Type in C#> [1] .NET 4 中引入了动态类型.动态对象 ...