工程能力UP | LightGBM的调参干货教程与并行优化
这是个人在竞赛中对LGB模型进行调参的详细过程记录,主要包含下面六个步骤:
- 大学习率,确定估计器参数
n_estimators/num_iterations/num_round/num_boost_round
; - 确定
num_leaves
和max_depth
- 确定
min_data_in_leaf
- 确定
bagging_fraction+bagging_freq
和feature_fraction
- 确定L1L2正则
reg_alpha
和reg_lambda
; - 降低学习率
【这里必须说一下,lightbg的参数的同义词实在太多了,很多不同的参数表示的是同一个意思,不过本文中使用“/”分开】
0 并行优化
主要有两种feature parallel特征并行和data parallel数据并行。具体的过程我不也不了解,因为我没有多个CPU给我耍(穷)。
- feature parallel:每个worker有全部的训练数据,但是他们只用部分特征进行训练,然后不同worker之间交流他们的局部最优特征和分裂点,比较出来哪一个是全局最优的。
- data parallel: 每一个worker有部分的样本,然后绘制局部特征直方图。彼此交流之后,得到全局直方图进行训练。
【虽然具体的机制不太了解,但是最重要的是:小数据用feature parallel,大数据用data parallel】
1. 估计器数量
不管怎么样,我们先把学习率先定一个较高的值,这里取 learning_rate = 0.1
,其次确定估计器boosting/boost/boosting_type
的类型,不过默认都会选gbdt
。
这里可以体现,虽然LGB和XGB经常拿来和GBDT比较,但是其本质都还是GBDT的boost思想
为了确定估计器的数目,也就是boosting迭代的次数,也可以说是残差树的数目,参数名为n_estimators/num_iterations/num_round/num_boost_round
。我们可以先将该参数设成一个较大的数,然后在cv结果中查看最优的迭代次数,具体如代码。
在这之前,我们必须给其他重要的参数一个初始值。初始值的意义不大,只是为了方便确定其他参数。下面先给定一下初始值:
以下参数根据具体项目要求定:
'boosting_type'/'boosting': 'gbdt'
'objective': 'regression'
'metric': 'rmse'
以下参数我选择的初始值,你可以根据自己的情况来选择:
'max_depth': 6 ### 根据问题来定咯,由于我的数据集不是很大,所以选择了一个适中的值,其实4-10都无所谓。
'num_leaves': 50 ### 由于lightGBM是leaves_wise生长,官方说法是要小于2^max_depth
'subsample'/'bagging_fraction':0.8 ### 数据采样
'colsample_bytree'/'feature_fraction': 0.8 ### 特征采样
下面我是用LightGBM的cv函数进行演示:
params = {
'boosting_type': 'gbdt',
'objective': 'regression',
'learning_rate': 0.1,
'num_leaves': 50,
'max_depth': 6,
'subsample': 0.8,
'colsample_bytree': 0.8,
}
data_train = lgb.Dataset(df_train, y_train, silent=True)
cv_results = lgb.cv(
params, data_train, num_boost_round=1000, nfold=5, stratified=False, shuffle=True, metrics='rmse',
early_stopping_rounds=50, verbose_eval=50, show_stdv=True, seed=0)
print('best n_estimators:', len(cv_results['rmse-mean']))
print('best cv score:', cv_results['rmse-mean'][-1])
运行结果是:
[50] cv_agg's rmse: 1.38497 + 0.0202823
best n_estimators: 43
best cv score: 1.3838664241
所以我们得到了结果,在学习率0.1的时候,有43个估计器的时候效果最好。所以现在我们已经调整好了一个参数了:n_estimators/num_iterations/num_round/num_boost_round=43
。
【在硬件设备允许的条件下,学习率还是越小越好】
2. 提高拟合程度
这是提高精确度的最重要的参数。
max_depth
:设置树深度,深度越大可能过拟合num_leaves
:因为 LightGBM 使用的是 leaf-wise 的算法,因此在调节树的复杂程度时,使用的是 num_leaves 而不是 max_depth。大致换算关系:num_leaves = 2^(max_depth),但是它的值的设置应该小于 2^(max_depth),否则可能会导致过拟合。
【这里虽然说了num_leaves与max_depth之间的关系,但是并不是严格的,大概在这个左右就好了。】
接下来同时对这两个参数调优,引入sklearn
中的GridSearchCV()
函数进行网格搜索,当然也可以使用贝叶斯搜索,贝叶斯这个之前在个人博客讲过,之后我有空了再搬运到公众号好了。
不过这个搜索过程,非常耗时间,非常消耗精力。对于大数据集的话,建议贝叶斯,或者就简单调整下就行了。一般这种参数优化的空间非常有限。
from sklearn.model_selection import GridSearchCV
### 我们可以创建lgb的sklearn模型,使用上面选择的(学习率,评估器数目)
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=50,
learning_rate=0.1, n_estimators=43, max_depth=6,
metric='rmse', bagging_fraction = 0.8,feature_fraction = 0.8)
params_test1={
'max_depth': range(3,8,2),
'num_leaves':range(50, 170, 30)
}
gsearch1 = GridSearchCV(estimator=model_lgb, param_grid=params_test1, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch1.fit(df_train, y_train)
gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_
来看下运行的结果:
Fitting 5 folds for each of 12 candidates, totalling 60 fits
[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.0min
[Parallel(n_jobs=4)]: Done 60 out of 60 | elapsed: 3.1min finished
([mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 50},
mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 80},
mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 110},
mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 140},
mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 50},
mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 80},
mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 110},
mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 140},
mean: -1.89254, std: 0.10904, params: {'max_depth': 7, 'num_leaves': 50},
mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 80},
mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 110},
mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 140}],
{'max_depth': 7, 'num_leaves': 80},
-1.8602436718814157)
这里运行了12个参数组合,得到的最优解是在max_depth
为7,num_leaves
为80的情况下,分数为-1.860。
这里必须说一下,sklearn模型评估里的scoring参数都是采用的higher return values are better than lower return values(较高的返回值优于较低的返回值)。
但是,我采用的metric策略采用的是均方误差(rmse),越低越好,所以sklearn就提供了neg_mean_squared_error
参数,也就是返回metric的负数,所以就均方差来说,也就变成负数越大越好了。
所以,可以看到,最优解的分数为-1.860,转化为均方差为np.sqrt(-(-1.860)) = 1.3639,明显比step1的分数要好很多。(之前用的是rmse均方根误差,要开方)
至此,我们将我们这步得到的最优解代入第三步。其实,我这里只进行了粗调,如果要得到更好的效果,可以将max_depth在7附近多取几个值,num_leaves在80附近多取几个值。千万不要怕麻烦,虽然这确实很麻烦。
params_test2={
'max_depth': [6,7,8],
'num_leaves':[68,74,80,86,92]
}
gsearch2 = GridSearchCV(estimator=model_lgb, param_grid=params_test2, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch2.fit(df_train, y_train)
gsearch2.grid_scores_, gsearch2.best_params_, gsearch2.best_score_
Fitting 5 folds for each of 15 candidates, totalling 75 fits
[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.8min
[Parallel(n_jobs=4)]: Done 75 out of 75 | elapsed: 5.1min finished
([mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 68},
mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 74},
mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 80},
mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 86},
mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 92},
mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 68},
mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 74},
mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 80},
mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 86},
mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 92},
mean: -1.88197, std: 0.11295, params: {'max_depth': 8, 'num_leaves': 68},
mean: -1.89117, std: 0.12686, params: {'max_depth': 8, 'num_leaves': 74},
mean: -1.86390, std: 0.12259, params: {'max_depth': 8, 'num_leaves': 80},
mean: -1.86733, std: 0.12159, params: {'max_depth': 8, 'num_leaves': 86},
mean: -1.86665, std: 0.12174, params: {'max_depth': 8, 'num_leaves': 92}],
{'max_depth': 7, 'num_leaves': 68},
-1.8602436718814157)
可见最大深度7是没问题的,但是看细节的话,发现在最大深度为7的情况下,叶结点的数量对分数并没有影响。
3. 降低过拟合
说到这里,就该降低过拟合了。
min_data_in_leaf
是一个很重要的参数, 也叫min_child_samples,它的值取决于训练数据的样本个树和num_leaves. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合。min_sum_hessian_in_leaf
:也叫min_child_weight,使一个结点分裂的最小海森值之和,真拗口(Minimum sum of hessians in one leaf to allow a split. Higher values potentially decrease overfitting)
关于第二个参数,其实我不是非常的明白,因为不太了解hessian值和hessian矩阵?之后有空抽个时间好好学习一下,我学习的过程就是这样查漏补缺2333。请大家关注公众号,这样不会错过每一个干货
我们采用跟上面相同的方法进行:
params_test3={
'min_child_samples': [18, 19, 20, 21, 22],
'min_child_weight':[0.001, 0.002]
}
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80,
learning_rate=0.1, n_estimators=43, max_depth=7,
metric='rmse', bagging_fraction = 0.8, feature_fraction = 0.8)
gsearch3 = GridSearchCV(estimator=model_lgb, param_grid=params_test3, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch3.fit(df_train, y_train)
gsearch3.grid_scores_, gsearch3.best_params_, gsearch3.best_score_
结果是:
Fitting 5 folds for each of 10 candidates, totalling 50 fits
[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.9min
[Parallel(n_jobs=4)]: Done 50 out of 50 | elapsed: 3.3min finished
([mean: -1.88057, std: 0.13948, params: {'min_child_samples': 18, 'min_child_weight': 0.001},
mean: -1.88057, std: 0.13948, params: {'min_child_samples': 18, 'min_child_weight': 0.002},
mean: -1.88365, std: 0.13650, params: {'min_child_samples': 19, 'min_child_weight': 0.001},
mean: -1.88365, std: 0.13650, params: {'min_child_samples': 19, 'min_child_weight': 0.002},
mean: -1.86024, std: 0.11364, params: {'min_child_samples': 20, 'min_child_weight': 0.001},
mean: -1.86024, std: 0.11364, params: {'min_child_samples': 20, 'min_child_weight': 0.002},
mean: -1.86980, std: 0.14251, params: {'min_child_samples': 21, 'min_child_weight': 0.001},
mean: -1.86980, std: 0.14251, params: {'min_child_samples': 21, 'min_child_weight': 0.002},
mean: -1.86750, std: 0.13898, params: {'min_child_samples': 22, 'min_child_weight': 0.001},
mean: -1.86750, std: 0.13898, params: {'min_child_samples': 22, 'min_child_weight': 0.002}],
{'min_child_samples': 20, 'min_child_weight': 0.001},
-1.8602436718814157)
这是我经过粗调后细调的结果,可以看到,min_data_in_leaf
的最优值为20,而min_sum_hessian_in_leaf
对最后的值几乎没有影响。且这里调参之后,最优的结果还是-1.86024,没有提升。
4. 采样降低过拟合
这两个参数都是为了降低过拟合的。
feature_fraction
参数来进行特征的子抽样。这个参数可以用来防止过拟合及提高训练速度。
bagging_fraction+bagging_freq
参数必须同时设置,bagging_fraction相当于subsample样本采样,可以使bagging更快的运行,同时也可以降拟合。bagging_freq默认0,表示bagging的频率,0意味着没有使用bagging,k意味着每k轮迭代进行一次bagging。
不同的参数,同样的方法:
params_test4={
'feature_fraction': [0.5, 0.6, 0.7, 0.8, 0.9],
'bagging_fraction': [0.6, 0.7, 0.8, 0.9, 1.0]
}
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80,
learning_rate=0.1, n_estimators=43, max_depth=7,
metric='rmse', bagging_freq = 5, min_child_samples=20)
gsearch4 = GridSearchCV(estimator=model_lgb, param_grid=params_test4, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch4.fit(df_train, y_train)
gsearch4.grid_scores_, gsearch4.best_params_, gsearch4.best_score_
Fitting 5 folds for each of 25 candidates, totalling 125 fits
[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.6min
[Parallel(n_jobs=4)]: Done 125 out of 125 | elapsed: 7.1min finished
([mean: -1.90447, std: 0.15841, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.5},
mean: -1.90846, std: 0.13925, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.6},
mean: -1.91695, std: 0.14121, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.7},
mean: -1.90115, std: 0.12625, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.8},
mean: -1.92586, std: 0.15220, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.9},
mean: -1.88031, std: 0.17157, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.5},
mean: -1.89513, std: 0.13718, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.6},
mean: -1.88845, std: 0.13864, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.7},
mean: -1.89297, std: 0.12374, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.8},
mean: -1.89432, std: 0.14353, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.9},
mean: -1.88088, std: 0.14247, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.5},
mean: -1.90080, std: 0.13174, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.6},
mean: -1.88364, std: 0.14732, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.7},
mean: -1.88987, std: 0.13344, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.8},
mean: -1.87752, std: 0.14802, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.9},
mean: -1.88348, std: 0.13925, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.5},
mean: -1.87472, std: 0.13301, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.6},
mean: -1.88656, std: 0.12241, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.7},
mean: -1.89029, std: 0.10776, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.8},
mean: -1.88719, std: 0.11915, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.9},
mean: -1.86170, std: 0.12544, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.5},
mean: -1.87334, std: 0.13099, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.6},
mean: -1.85412, std: 0.12698, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.7},
mean: -1.86024, std: 0.11364, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.8},
mean: -1.87266, std: 0.12271, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.9}],
{'bagging_fraction': 1.0, 'feature_fraction': 0.7},
-1.8541224387666373)
从这里可以看出来,bagging_feaction
和feature_fraction
的理想值分别是1.0和0.7,一个很重要原因就是,我的样本数量比较小(4000+),但是特征数量很多(1000+)。所以,这里我们取更小的步长,对feature_fraction进行更细致的取值。
下面微调一下:
params_test5={
'feature_fraction': [0.62, 0.65, 0.68, 0.7, 0.72, 0.75, 0.78 ]
}
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80,
learning_rate=0.1, n_estimators=43, max_depth=7,
metric='rmse', min_child_samples=20)
gsearch5 = GridSearchCV(estimator=model_lgb, param_grid=params_test5, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch5.fit(df_train, y_train)
gsearch5.grid_scores_, gsearch5.best_params_, gsearch5.best_score_
Fitting 5 folds for each of 7 candidates, totalling 35 fits
[Parallel(n_jobs=4)]: Done 35 out of 35 | elapsed: 2.3min finished
([mean: -1.86696, std: 0.12658, params: {'feature_fraction': 0.62},
mean: -1.88337, std: 0.13215, params: {'feature_fraction': 0.65},
mean: -1.87282, std: 0.13193, params: {'feature_fraction': 0.68},
mean: -1.85412, std: 0.12698, params: {'feature_fraction': 0.7},
mean: -1.88235, std: 0.12682, params: {'feature_fraction': 0.72},
mean: -1.86329, std: 0.12757, params: {'feature_fraction': 0.75},
mean: -1.87943, std: 0.12107, params: {'feature_fraction': 0.78}],
{'feature_fraction': 0.7},
-1.8541224387666373)
好吧,feature_fraction就是0.7了
5. L1与L2
正则化参数lambda_l1(reg_alpha), lambda_l2(reg_lambda),毫无疑问,是降低过拟合的,两者分别对应l1正则化和l2正则化。我们也来尝试一下使用这两个参数。
params_test6={
'reg_alpha': [0, 0.001, 0.01, 0.03, 0.08, 0.3, 0.5],
'reg_lambda': [0, 0.001, 0.01, 0.03, 0.08, 0.3, 0.5]
}
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80,
learning_rate=0.b1, n_estimators=43, max_depth=7,
metric='rmse', min_child_samples=20, feature_fraction=0.7)
gsearch6 = GridSearchCV(estimator=model_lgb, param_grid=params_test6, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch6.fit(df_train, y_train)
gsearch6.grid_scores_, gsearch6.best_params_, gsearch6.best_score_
Fitting 5 folds for each of 49 candidates, totalling 245 fits
[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.8min
[Parallel(n_jobs=4)]: Done 192 tasks | elapsed: 10.6min
[Parallel(n_jobs=4)]: Done 245 out of 245 | elapsed: 13.3min finished
([mean: -1.85412, std: 0.12698, params: {'reg_alpha': 0, 'reg_lambda': 0},
mean: -1.85990, std: 0.13296, params: {'reg_alpha': 0, 'reg_lambda': 0.001},
mean: -1.86367, std: 0.13634, params: {'reg_alpha': 0, 'reg_lambda': 0.01},
mean: -1.86787, std: 0.13881, params: {'reg_alpha': 0, 'reg_lambda': 0.03},
mean: -1.87099, std: 0.12476, params: {'reg_alpha': 0, 'reg_lambda': 0.08},
mean: -1.87670, std: 0.11849, params: {'reg_alpha': 0, 'reg_lambda': 0.3},
mean: -1.88278, std: 0.13064, params: {'reg_alpha': 0, 'reg_lambda': 0.5},
mean: -1.86190, std: 0.13613, params: {'reg_alpha': 0.001, 'reg_lambda': 0},
mean: -1.86190, std: 0.13613, params: {'reg_alpha': 0.001, 'reg_lambda': 0.001},
mean: -1.86515, std: 0.14116, params: {'reg_alpha': 0.001, 'reg_lambda': 0.01},
mean: -1.86908, std: 0.13668, params: {'reg_alpha': 0.001, 'reg_lambda': 0.03},
mean: -1.86852, std: 0.12289, params: {'reg_alpha': 0.001, 'reg_lambda': 0.08},
mean: -1.88076, std: 0.11710, params: {'reg_alpha': 0.001, 'reg_lambda': 0.3},
mean: -1.88278, std: 0.13064, params: {'reg_alpha': 0.001, 'reg_lambda': 0.5},
mean: -1.87480, std: 0.13889, params: {'reg_alpha': 0.01, 'reg_lambda': 0},
mean: -1.87284, std: 0.14138, params: {'reg_alpha': 0.01, 'reg_lambda': 0.001},
mean: -1.86030, std: 0.13332, params: {'reg_alpha': 0.01, 'reg_lambda': 0.01},
mean: -1.86695, std: 0.12587, params: {'reg_alpha': 0.01, 'reg_lambda': 0.03},
mean: -1.87415, std: 0.13100, params: {'reg_alpha': 0.01, 'reg_lambda': 0.08},
mean: -1.88543, std: 0.13195, params: {'reg_alpha': 0.01, 'reg_lambda': 0.3},
mean: -1.88076, std: 0.13502, params: {'reg_alpha': 0.01, 'reg_lambda': 0.5},
mean: -1.87729, std: 0.12533, params: {'reg_alpha': 0.03, 'reg_lambda': 0},
mean: -1.87435, std: 0.12034, params: {'reg_alpha': 0.03, 'reg_lambda': 0.001},
mean: -1.87513, std: 0.12579, params: {'reg_alpha': 0.03, 'reg_lambda': 0.01},
mean: -1.88116, std: 0.12218, params: {'reg_alpha': 0.03, 'reg_lambda': 0.03},
mean: -1.88052, std: 0.13585, params: {'reg_alpha': 0.03, 'reg_lambda': 0.08},
mean: -1.87565, std: 0.12200, params: {'reg_alpha': 0.03, 'reg_lambda': 0.3},
mean: -1.87935, std: 0.13817, params: {'reg_alpha': 0.03, 'reg_lambda': 0.5},
mean: -1.87774, std: 0.12477, params: {'reg_alpha': 0.08, 'reg_lambda': 0},
mean: -1.87774, std: 0.12477, params: {'reg_alpha': 0.08, 'reg_lambda': 0.001},
mean: -1.87911, std: 0.12027, params: {'reg_alpha': 0.08, 'reg_lambda': 0.01},
mean: -1.86978, std: 0.12478, params: {'reg_alpha': 0.08, 'reg_lambda': 0.03},
mean: -1.87217, std: 0.12159, params: {'reg_alpha': 0.08, 'reg_lambda': 0.08},
mean: -1.87573, std: 0.14137, params: {'reg_alpha': 0.08, 'reg_lambda': 0.3},
mean: -1.85969, std: 0.13109, params: {'reg_alpha': 0.08, 'reg_lambda': 0.5},
mean: -1.87632, std: 0.12398, params: {'reg_alpha': 0.3, 'reg_lambda': 0},
mean: -1.86995, std: 0.12651, params: {'reg_alpha': 0.3, 'reg_lambda': 0.001},
mean: -1.86380, std: 0.12793, params: {'reg_alpha': 0.3, 'reg_lambda': 0.01},
mean: -1.87577, std: 0.13002, params: {'reg_alpha': 0.3, 'reg_lambda': 0.03},
mean: -1.87402, std: 0.13496, params: {'reg_alpha': 0.3, 'reg_lambda': 0.08},
mean: -1.87032, std: 0.12504, params: {'reg_alpha': 0.3, 'reg_lambda': 0.3},
mean: -1.88329, std: 0.13237, params: {'reg_alpha': 0.3, 'reg_lambda': 0.5},
mean: -1.87196, std: 0.13099, params: {'reg_alpha': 0.5, 'reg_lambda': 0},
mean: -1.87196, std: 0.13099, params: {'reg_alpha': 0.5, 'reg_lambda': 0.001},
mean: -1.88222, std: 0.14735, params: {'reg_alpha': 0.5, 'reg_lambda': 0.01},
mean: -1.86618, std: 0.14006, params: {'reg_alpha': 0.5, 'reg_lambda': 0.03},
mean: -1.88579, std: 0.12398, params: {'reg_alpha': 0.5, 'reg_lambda': 0.08},
mean: -1.88297, std: 0.12307, params: {'reg_alpha': 0.5, 'reg_lambda': 0.3},
mean: -1.88148, std: 0.12622, params: {'reg_alpha': 0.5, 'reg_lambda': 0.5}],
{'reg_alpha': 0, 'reg_lambda': 0},
-1.8541224387666373)
哈哈,看来我多此一举了。
6. 降低learning_rate
回到第一步,不过我们使用的是已经优化好的参数值:
params = {
'boosting_type': 'gbdt',
'objective': 'regression',
'learning_rate': 0.005,
'num_leaves': 80,
'max_depth': 7,
'min_data_in_leaf': 20,
'subsample': 1,
'colsample_bytree': 0.7,
}
data_train = lgb.Dataset(df_train, y_train, silent=True)
cv_results = lgb.cv(
params, data_train, num_boost_round=10000, nfold=5, stratified=False, shuffle=True, metrics='rmse',
early_stopping_rounds=50, verbose_eval=100, show_stdv=True)
print('best n_estimators:', len(cv_results['rmse-mean']))
print('best cv score:', cv_results['rmse-mean'][-1])
[100] cv_agg's rmse: 1.52939 + 0.0261756
[200] cv_agg's rmse: 1.43535 + 0.0187243
[300] cv_agg's rmse: 1.39584 + 0.0157521
[400] cv_agg's rmse: 1.37935 + 0.0157429
[500] cv_agg's rmse: 1.37313 + 0.0164503
[600] cv_agg's rmse: 1.37081 + 0.0172752
[700] cv_agg's rmse: 1.36942 + 0.0177888
[800] cv_agg's rmse: 1.36854 + 0.0180575
[900] cv_agg's rmse: 1.36817 + 0.0188776
[1000] cv_agg's rmse: 1.36796 + 0.0190279
[1100] cv_agg's rmse: 1.36783 + 0.0195969
best n_estimators: 1079
best cv score: 1.36772351783
参考链接:
- https://www.2cto.com/kf/201607/528771.html
- https://zhuanlan.zhihu.com/p/30627440
- https://www.jianshu.com/p/b4ac0596e5ef
- https://www.cnblogs.com/bjwu/p/9307344.html
工程能力UP | LightGBM的调参干货教程与并行优化的更多相关文章
- 机器学习系列:LightGBM 可视化调参
大家好,在100天搞定机器学习|Day63 彻底掌握 LightGBM一文中,我介绍了LightGBM 的模型原理和一个极简实例.最近我发现Huggingface与Streamlit好像更配,所以就开 ...
- DJI-A2调参详细教程
DJI-A2飞控系统用户手册 https://wenku.baidu.com/view/bb632f88227916888586d749.html DJI-A2调参软件视频教程 http://www. ...
- LightGBM调参笔记
本文链接:https://blog.csdn.net/u012735708/article/details/837497031. 概述在竞赛题中,我们知道XGBoost算法非常热门,是很多的比赛的大杀 ...
- DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化
DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化 2017年11月29日 06:40:37 机器之心V 阅读数 2183 版权声明:本文为博主原创文章,遵循CC 4.0 BY ...
- 自动调参库hyperopt+lightgbm 调参demo
在此之前,调参要么网格调参,要么随机调参,要么肉眼调参.虽然调参到一定程度,进步有限,但仍然很耗精力. 自动调参库hyperopt可用tpe算法自动调参,实测强于随机调参. hyperopt 需要自己 ...
- LightGBM 调参方法(具体操作)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- lightgbm调参方法
gridsearchcv: https://www.cnblogs.com/bjwu/p/9307344.html gridsearchcv+lightgbm cv函数调参: https://www. ...
- 【集成学习】lightgbm调参案例
lightgbm使用leaf_wise tree生长策略,leaf_wise_tree的优点是收敛速度快,缺点是容易过拟合. # lightgbm关键参数 # lightgbm调参方法cv 代码git ...
- XGBoost和LightGBM的参数以及调参
一.XGBoost参数解释 XGBoost的参数一共分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression).booster参数一般可以调 ...
随机推荐
- 2020/6/10 JavaScript高级程序设计 BOM
BOM(浏览器对象模型):提供用于访问浏览器的对象. 8.1 window对象 window是BOM的核心对象,表示浏览器的一个实例. JavaScript访问浏览器窗口的接口 ECMAScript规 ...
- SpringBoot--集成actuator
actuator是spring boot项目中非常强大一个功能,有助于对应用程序进行监视和管理,通过 restful api 请求来监管.审计.收集应用的运行情况,针对微服务而言它是必不可少的一个环节 ...
- webpack入门进阶(1)
1.webpack应用实例 1.1.快速上手 初始化项目 mkdir webpack-demo cd webpack-demo npm init -y 安装webpack npm i webpack@ ...
- 4W字的后端面试知识点总结(持续更新)
点赞再看,养成习惯,微信搜索[三太子敖丙]关注这个互联网苟且偷生的工具人. 本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试完整考点.资料以及我的 ...
- 日期类&&包装类&&System类&&Math类&&Arrays数组类&&大数据类
day 07 日期类 Date 构造函数 Date():返还当前日期. Date(long date):返还指定日期 date:时间戳--->距离1970年1月1日 零时的毫秒数 常用方法 日期 ...
- SecureCRT连接阿里云ECS服务器,经常掉线的解决方案
1 使用SecureCRT远程连接后,Options > Session Options > Terminal(终端) > 勾选 “Send protocol NO-OP”
- 设置overflow:hiden行内元素会发生偏移的现象
父级元素包含几个行内元素 <div id="box"> <p> <span>按钮</span> <span>测试文字文字 ...
- 读CSAPP第一章的收获
这个系列只写了CSAPP第三版对于我的收获. 里面的内容很多,我只写我以前不知道的,然后现在又觉得挺有用的内容. 没有很好的排版,将就看. Amadhl定律:主要观点,想要显著加速整个系统,必须提升全 ...
- mac篇---使用iTerm2快捷连接SSH
大家都知道使用iTerm2连接shh 使用命令 ssh -p22 root@129.10.10.1,然后输入密码即可. 但是每次都输入还是比较麻烦的.iTerm2为我们提供了快捷的方式.三步即可完成此 ...
- ::before 和 :after 中双冒号和单冒号有什么区别?
在 CSS 中伪类一直用 : 表示,如 :hover, :active 等 伪元素在CSS1中已存在,当时语法是用 : 表示,如 :before 和 :after 后来在CSS3中修订,伪元素用 :: ...