赛道修建类似,先对\(k\)进行二分,将最值问题转化为判定问题。

在判定一个\(k\)是否合法时,贪心去考虑,一个节点下面的若干条链在合并时,一条链肯定和另一条使它合并后恰好满足长度限制的链合并最优。因此我们用\(multiset\)来进行维护,一条长度为\(len\)的链,去查询第一条长度大于等于\(k-len\)的链,若找不到,即不合法。

再考虑到一个非根节点在合并链时,是可以有一条链无法合并,其它链两两配对,那么剩下那个链就往上继续寻找配对即可,但根节点肯定是要两两配对。

所以在合并时,可以增加一个长度为\(0\)的链,来使非根节点的链数量为奇数,使根节点的链数量为偶数,方便一些细节的处理。

实现就看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 200010
using namespace std;
typedef multiset<int>::iterator mul;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n;
bool flag;
int f[maxn];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt=1;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
void dfs(int x,int fa,int len)
{
if(!flag) return;
multiset<int> s;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(y==fa) continue;
dfs(y,x,len);
s.insert(f[y]+1);
}
int size=s.size();
bool tag=false;
if((x==1&&size&1)||(x!=1&&!(size&1))) s.insert(0);
while(!s.empty())
{
if(!flag) break;
int l1;
mul t1=s.begin(),t2;
l1=*t1,s.erase(t1),t2=s.lower_bound(len-l1);
if(x==1)
{
if(t2==s.end())
{
flag=false;
break;
}
s.erase(t2);
}
else
{
if(t2==s.end()&&tag)
{
flag=false;
break;
}
if(t2==s.end()&&!tag) f[x]=l1,tag=true;
if(t2!=s.end()) s.erase(t2);
}
}
}
bool check(int x)
{
flag=true,memset(f,0,sizeof(f)),dfs(1,0,x);
return flag;
}
int main()
{
read(n);
for(int i=1;i<n;++i)
{
int a,b;
read(a),read(b);
add(a,b),add(b,a);
}
int l=1,r=n-1,ans=1;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)) ans=mid,l=mid+1;
else r=mid-1;
}
printf("%d",ans);
return 0;
}

题解 洛谷 P6142 【[USACO20FEB]Delegation P】的更多相关文章

  1. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  2. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  3. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  4. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  5. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  6. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  7. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  8. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  9. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

随机推荐

  1. python多线程+生产者和消费者模型+queue使用

    多线程简介 多线程:在一个进程内部,要同时干很多事情,就需要同时执行多个子任务,我们把进程内的这些子任务叫线程. 线程的内存空间是共享的,每个线程都共享同一个进程的资源 模块: 1._thread模块 ...

  2. Nginx负载均衡的详细配置 + Keepalived使用

    1,话不多说, 这里我们来说下很重要的负载均衡, 那么什么是负载均衡呢? 由于目前现有网络的各个核心部分随着业务量的提高,访问量和数据流量的快速增长,其处理能力和计算强度也相应地增大,使得单一的服务器 ...

  3. 8.eclipse 安装 lombook插件

    参考博客:https://www.liangzl.com/get-article-detail-129979.html

  4. Python3-算法-递归

    递归 递归算法是指一般通过函数或子进程来实现,在函数或子进程的内部,直接或间接地调用自己的算法,说白了就是自己调自己 注: 1.在使用递归的时候,必须要有一个递归出口,即一个明确的结束条件,否则就是死 ...

  5. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  6. [Debian]查看进程、终止进程

    # jobs -l [1]+ 115 Running nohup /usr/local/bin/dotnet/dotnet/dotnet /usr/share/nginx/asp/publish/Wi ...

  7. 堆/题解 P3378 【【模板】堆】

    概念: 堆就是一颗二叉树,满足父亲节点总是比儿子节点大(小).因此,堆也分为大根堆和小根堆,大根堆就是父亲节点比儿子节点大,小根堆正好相反.注意加粗的地方,是每一个节点哦!!!!! 还是直接看例题吧, ...

  8. Red Hat Enterprise Linux 6上安装Oracle 11G(11.2.0.4.0)缺少pdksh包的问题

    RHEL 6上安装Oracle 11G警告缺少pdksh包 前言 相信很多刚刚接触学习Oracle的人,在RHEL6上安装11.2.0.3 or 11.2.0.4这两个版本的时候, 都遇到过先决条件检 ...

  9. nodejs 本地压缩jpg,png图片(nodejs)

    使用nodejs实现本地压缩jpg,png图片. 使用到的包 1.images   用于压缩jpg npm install images yarn add images 2.imagemin 用于压缩 ...

  10. GAN网络从入门教程(一)之GAN网络介绍

    GAN网络从入门教程(一)之GAN网络介绍 稍微的开一个新坑,同样也是入门教程(因此教程的内容不会是从入门到精通,而是从入门到入土).主要是为了完成数据挖掘的课程设计,然后就把挖掘榔头挖到了GAN网络 ...