前文传送门:

  1. Spring源码分析之预启动流程
  2. Spring源码分析之BeanFactory体系结构
  3. Spring源码分析之BeanFactoryPostProcessor调用过程详解

本文内容:

  1. 在IOC中,是如何通过beanDefition创建出一个bean的?
  2. 各BeanPostProcessor在这过程中扮演的角色,调用时机?

话不多说,直接正题走起,上图!

下面是bean创建过程的大致流程图,本文将以图中顺序进行逐步源码分析,小伙伴亦可与图中流程边对照边品食

原矢量图地址:https://www.processon.com/view/link/5f6174431e08531edf3134fb

我们知道,在Spring IOC前段部分有注册了一系列的BeanPostProcessor,在Bean的创建过程中,就将要使用到他们了,下面我给大家一一列出

  • AutowiredAnnotationBeanPostProcessor:在new AnnotatedBeanDefinitionReader时注册

  • CommonAnnotationBeanPostProcessor: 在new AnnotatedBeanDefinitionReader时注册

  • ApplicationContextAwareProcessor: 在prepareBeanFactory时注册

  • ApplicationListenerDetector: 在prepareBeanFactory时注册

  • ImportAwareBeanPostProcessor: 在配置类后置处理器调用postProcessBeanFactory注册

  • BeanPostProcessorChecker:在registerBeanPostProcessors时注册

以上就是Spring中内置的所有BeanPostProcessor了

同样,我们先从最开始的入口refresh开始分析

public void refresh(){
//....省略前面部分
// 实例化剩余的单例bean
finishBeanFactoryInitialization(beanFactory);
}

finishBeanFactoryInitialization

protected void finishBeanFactoryInitialization(ConfigurableListableBeanFactory beanFactory){
// 将所有非懒加载的bean加载到容器中
beanFactory.preInstantiateSingletons();
}

循环我们之前注册的所有beanDefinition,一个个的进行调用getBean注册到容器中

public void preInstantiateSingletons(){
// 循环所有beanDefinition
for (String beanName : beanNames) {
// 将beanDefinition转化为RootBeanDefinition
RootBeanDefinition bd = getMergedLocalBeanDefinition(beanName);
// 不是抽象类并且是单例并且非懒加载
if (!bd.isAbstract() && bd.isSingleton() && !bd.isLazyInit()) {
// 是否为工厂bean
if (isFactoryBean(beanName)) {
// 由于是以&开头获取bean,这里返回的是一个工厂bean,并且不会调用getObject方法
Object bean = getBean(FACTORY_BEAN_PREFIX + beanName);
if (bean instanceof FactoryBean) {
// 判断是否要立即初始化bean
FactoryBean<?> factory = (FactoryBean<?>) bean;
boolean isEagerInit = (factory instanceof SmartFactoryBean &&
((SmartFactoryBean<?>) factory).isEagerInit());
if (isEagerInit) {
// 以为&开头的方式再获取一次,此时会调用FactoryBean的getObject()方法
getBean(beanName);
}
}
}
else {
// 不是FactoryBean,直接使用getBean进行初始化
getBean(beanName);
}
}
}
}

接下来就是Spring的常规操作,调用do开头的doGetBean

public Object getBean(String name) throws BeansException {
return doGetBean(name, null, null, false);
}

以下为doGetBean中获取单例bean的逻辑

// 转化beanName 如果是以&开头则去除,如果有别名则获取别名
String beanName = transformedBeanName(name);
// 尝试从三级缓存中获取bean
Object sharedInstance = getSingleton(beanName);
// 是否从缓存中获取到了bean
if (sharedInstance != null && args == null) {
// 如果是工厂类且name不以&开头,则调用工厂类的getObject()
// 其他情况返回原对象
bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);
}

getSingleton

public Object getSingleton(String beanName) {
return getSingleton(beanName, true);
}
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
// 从单例缓存池中获取
Object singletonObject = this.singletonObjects.get(beanName);
// 获取不到,判断bean是否正在创建
// 如果是正在创建,2种情况 1.多个线程在创建bean 2.发生循环依赖
// 如果是多个线程,则由于同步锁阻塞于此
// 循环依赖的问题较为复杂,将在下章详细分析
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
synchronized (this.singletonObjects) {
// 从早期对象缓存池中获取
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null && allowEarlyReference) {
// 从三级缓存中获取单例工厂
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
// 调用回调方法获取早期bean
singletonObject = singletonFactory.getObject();
// 将早期对象放到二级缓存,移除三级缓存
this.earlySingletonObjects.put(beanName, singletonObject);
this.singletonFactories.remove(beanName);
}
}
}
}
return singletonObject;
}

getObjectForBeanInstance

protected Object getObjectForBeanInstance(
Object beanInstance, String name, String beanName, @Nullable RootBeanDefinition mbd) {
// 判断name是否以&开头,是则直接返回该FactoryBean
/*public static boolean isFactoryDereference(@Nullable String name) {
return (name != null && name.startsWith(BeanFactory.FACTORY_BEAN_PREFIX));
}*/
if (BeanFactoryUtils.isFactoryDereference(name)) {
return beanInstance;
}
// 不是工厂bean直接返回原对象
if (!(beanInstance instanceof FactoryBean)) {
return beanInstance;
}
// 尝试从缓存中获取,保证多次从工厂bean获取的bean是同一个bean
object = getCachedObjectForFactoryBean(beanName);
if (object == null) {
FactoryBean<?> factory = (FactoryBean<?>) beanInstance;
boolean synthetic = (mbd != null && mbd.isSynthetic());
// 从FactoryBean获取对象
object = getObjectFromFactoryBean(factory, beanName, !synthetic);
}
return object;
}

getObjectFromFactoryBean的代码摘取片段

protected Object getObjectFromFactoryBean(FactoryBean<?> factory, String beanName, boolean shouldPostProcess){
// 获取bean,调用factoryBean的getObject()
object = doGetObjectFromFactoryBean(factory, beanName);
}
private Object doGetObjectFromFactoryBean(FactoryBean<?> factory, String beanName){
object = factory.getObject();
}

以上为从缓存中获取到bean,处理FactoryBean的逻辑,接下来我们看看实际创建bean的过程

以下为续接上面doGetBean中未从缓存中获取到bean的逻辑

// 如果有被@DependsOn标记,先创建DependsOn的bean
String[] dependsOn = mbd.getDependsOn();
if (dependsOn != null) {
for (String dep : dependsOn) {
registerDependentBean(dep, beanName);
getBean(dep);
}
}
// 单例bean
if (mbd.isSingleton()) {
// 开始创建bean
sharedInstance = getSingleton(beanName, () -> {
// 真正创建bean
return createBean(beanName, mbd, args);
});
// 如果是工厂类且name不以&开头,则调用工厂类的getObject()
// 其他情况返回原对象
bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}

getSingleton,此方法为重载方法,与从缓存中获取bean并非同一个

public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
Assert.notNull(beanName, "Bean name must not be null");
// 开始创建bean时加锁,注意这个锁的同步对象与从缓存中获取时锁的同步对象相同
synchronized (this.singletonObjects) {
// 再次从缓存中获取,有直接返回,出现有的情况
// 1.线程一正在创建A实例,线程二尝试获取,被同步锁阻塞
// 2.线程一创建完毕,线程二进入同步代码块,从缓存中获取直接返回
Object singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
// 标记正在创建中
beforeSingletonCreation(beanName);
boolean newSingleton = false;
try {
// 调用回调函数获取到bean
singletonObject = singletonFactory.getObject();
newSingleton = true;
}
finally {
// 清理状态
afterSingletonCreation(beanName);
}
if (newSingleton) {
// 将创建的bean添加到单例缓存池中,并移除二三级缓存
addSingleton(beanName, singletonObject);
}
}
return singletonObject;
}
}

createBean,终于开始创建bean了~

protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args){
// 第一次调用bean后置处理器,在bean实例化之前的进行处理
// Spring内置的后置处理器中,无相关实现
// 可使用自定义的后置处理器在这里进行中止bean的创建过程操作
Object bean = resolveBeforeInstantiation(beanName, mbdToUse);
if (bean != null) {
// 如果自定义的后置处理器返回了bean,则直接return,bean的创建过程于此中断
return bean;
}
// 进行创建bean
Object beanInstance = doCreateBean(beanName, mbdToUse, args);
}
protected Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args){
// 实例化bean 第二次调用bean后置处理器,用于获取bean的有参构造器
instanceWrapper = createBeanInstance(beanName, mbd, args);
// 第三次 处理beanDefinition的元数据信息
applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);
// 是否允许暴露早期对象
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
// 第四次 用于获取早期对象时的处理
// 将获取早期对象的回调方法放到三级缓存中
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
// 第五、六次,填充属性 可使用的方式 byName byType @Resource @Value @Autowired @Inject
populateBean(beanName, mbd, instanceWrapper);
// 第七、八次,初始化
exposedObject = initializeBean(beanName, exposedObject, mbd);
// 第九次 判断bean是否有销毁方法,有则将bean注册到销毁集合中,用于容器关闭时使用
registerDisposableBeanIfNecessary(beanName, bean, mbd);
// 返回创建好的bean
return exposedObject;
}

你以为这就结束了?

接下来我们就来看看这里后置处理器到底做了什么吧

由于第一次调用并未有任何处理,我们从第二次调用开始分析

createBeanInstance

protected BeanWrapper createBeanInstance(String beanName, RootBeanDefinition mbd, @Nullable Object[] args){
// 获取beanClass
Class<?> beanClass = resolveBeanClass(mbd, beanName);
// 使用AutowiredAnnotationBeanPostProcessor进行构造器推断,找到所有的有参构造器
Constructor<?>[] ctors = determineConstructorsFromBeanPostProcessors(beanClass, beanName);
if (ctors != null || mbd.getResolvedAutowireMode() == AUTOWIRE_CONSTRUCTOR ||
mbd.hasConstructorArgumentValues() || !ObjectUtils.isEmpty(args)) {
// 实例化bean,并根据参数自动装配
return autowireConstructor(beanName, mbd, ctors, args);
}
// 调用无参的构造方法实例化
return instantiateBean(beanName, mbd);
}

determineConstructorsFromBeanPostProcessors

protected Constructor<?>[] determineConstructorsFromBeanPostProcessors(@Nullable Class<?> beanClass, String beanName)
throws BeansException { if (beanClass != null && hasInstantiationAwareBeanPostProcessors()) {
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof SmartInstantiationAwareBeanPostProcessor) {
// 只有AutowiredAnnotationBeanPostProcessor进行了实现,其他的都返回null
SmartInstantiationAwareBeanPostProcessor ibp = (SmartInstantiationAwareBeanPostProcessor) bp;
// 确认候选的构造器
Constructor<?>[] ctors = ibp.determineCandidateConstructors(beanClass, beanName);
if (ctors != null) {
return ctors;
}
}
}
}
return null;
}

AutowiredAnnotationBeanPostProcessor#determineCandidateConstructors

public Constructor<?>[] determineCandidateConstructors(Class<?> beanClass, final String beanName){
// 获取到所有的构造方法
rawCandidates = beanClass.getDeclaredConstructors();
for (Constructor<?> candidate : rawCandidates) {
// 是否带有@Autowired注解
MergedAnnotation<?> ann = findAutowiredAnnotation(candidate);
if (ann != null) {
// 是否必须
boolean required = determineRequiredStatus(ann);
candidates.add(candidate);
}
else if (candidate.getParameterCount() == 0) {
// 无参构造器
defaultConstructor = candidate;
}
}
// 候选的构造器不为空
if (!candidates.isEmpty()) {
// 候选的构造器不为空而requiredConstructor为空表示有@Autowired标识的构造器
// 但是required=false
if (requiredConstructor == null) {
if (defaultConstructor != null) {
// 将无参构造器也加入到候选构造器集合中
candidates.add(defaultConstructor);
}
}
// 将集合中的构造器转化为数组
candidateConstructors = candidates.toArray(new Constructor<?>[0]);
}
// 候选的构造器为空,但有一个有参构造器,则使用有参构造器作为候选的构造器
else if (rawCandidates.length == 1 && rawCandidates[0].getParameterCount() > 0) {
candidateConstructors = new Constructor<?>[] {rawCandidates[0]};
}
// 返回候选构造器数组
return (candidateConstructors.length > 0 ? candidateConstructors : null);
}

autowireConstructor 实例化并自动装配,摘取代码片段

protected BeanWrapper autowireConstructor(
String beanName, RootBeanDefinition mbd, @Nullable Constructor<?>[] ctors, @Nullable Object[] explicitArgs) { return new ConstructorResolver(this).autowireConstructor(beanName, mbd, ctors, explicitArgs);
}
public BeanWrapper autowireConstructor(String beanName, RootBeanDefinition mbd,
@Nullable Constructor<?>[] chosenCtors, @Nullable Object[] explicitArgs) {
for (Constructor<?> candidate : candidates) {
// 获取参数的类型
Class<?>[] paramTypes = candidate.getParameterTypes();
// 获取依赖的bean
argsHolder = createArgumentArray(beanName, mbd, resolvedValues, bw, paramTypes, paramNames..);
// 调用instantiate方法进行实例化bean
bw.setBeanInstance(instantiate(beanName, mbd, constructorToUse, argsToUse));
}
}

以上便是bean的实例化过程

applyMergedBeanDefinitionPostProcessors

第三次主要是将标识了需要自动装配注解的属性或方法解析出来,包含的注解主要有 @Resource @Autowired @Value @Inject @PostConstruct @PreDestroy

protected void applyMergedBeanDefinitionPostProcessors(RootBeanDefinition mbd, Class<?> beanType, String beanName) {
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof MergedBeanDefinitionPostProcessor) {
// CommonAnnotationBeanPostProcessor解析@PostConstruct @PreDestroy @Resource
// AutowiredAnnotationBeanPostProcessor 解析@Autowired @Value @Inject
MergedBeanDefinitionPostProcessor bdp = (MergedBeanDefinitionPostProcessor) bp;
bdp.postProcessMergedBeanDefinition(mbd, beanType, beanName);
}
}
}

CommonAnnotationBeanPostProcessor#postProcessMergedBeanDefinition

public void postProcessMergedBeanDefinition(RootBeanDefinition beanDefinition, Class<?> beanType, String beanName) {
// 父类为InitDestroyAnnotationBeanPostProcessor
// 寻找@PostConstruct @PreDestroy注解的方法
// 用于bean的生命周期中初始化前的处理逻辑
super.postProcessMergedBeanDefinition(beanDefinition, beanType, beanName);
// 寻找@Resource注解标识的属性或方法元数据
// 将这些元数据保存到缓存中,用于在属性装配阶段使用
InjectionMetadata metadata = findResourceMetadata(beanName, beanType, null);
// 检查是否有重复的元数据,去重处理,如一个属性上既有@Autowired注解,又有@Resource注解
// 只使用一种方式进行注入,由于@Resource先进行解析,所以会选择@Resource的方式
metadata.checkConfigMembers(beanDefinition);
}

InitDestroyAnnotationBeanPostProcessor#postProcessMergedBeanDefinition

public void postProcessMergedBeanDefinition(RootBeanDefinition beanDefinition, Class<?> beanType, String beanName) {
// 寻找PostConstruct @PreDestroy注解的方法
LifecycleMetadata metadata = findLifecycleMetadata(beanType);
// 去重处理
metadata.checkConfigMembers(beanDefinition);
}

所有的后置处理器的过程是相似的,这里取CommonAnnotationBeanPostProcessor进行分析

我们先来看看寻找元数据的过程

private InjectionMetadata findResourceMetadata(String beanName, final Class<?> clazz, @Nullable PropertyValues pvs) {
String cacheKey = (StringUtils.hasLength(beanName) ? beanName : clazz.getName());
// 从缓存中获取
// 调用postProcessMergedBeanDefinition方法时将元数据解析放入缓存
// 调用postProcessProperties方法时将元数据取出
InjectionMetadata metadata = this.injectionMetadataCache.get(cacheKey);
if (InjectionMetadata.needsRefresh(metadata, clazz)) {
synchronized (this.injectionMetadataCache) {
metadata = this.injectionMetadataCache.get(cacheKey);
if (InjectionMetadata.needsRefresh(metadata, clazz)) {
if (metadata != null) {
metadata.clear(pvs);
}
// 创建元数据,寻找@Resouce标识的属性或方法
metadata = buildResourceMetadata(clazz);
this.injectionMetadataCache.put(cacheKey, metadata);
}
}
}
return metadata;
}

buildResourceMetadata

private InjectionMetadata buildResourceMetadata(final Class<?> clazz){
// 判断是否为候选的class,不是则返回默认的空元数据
// resourceAnnotationTypes为Annotation集合,里面包含了@Resource @EJB @WebServiceRef
// 我们一般常用的只是@Resource
if (!AnnotationUtils.isCandidateClass(clazz, resourceAnnotationTypes)) {
return InjectionMetadata.EMPTY;
}
do {
// 循环所有的属性,判断属性是否存在WebServiceRef、EJB、Resource注解,有则构建元数据
// doWithLocalFields中就是将targetClass的所有field取出进行循环
ReflectionUtils.doWithLocalFields(targetClass, field -> {
if (webServiceRefClass != null && field.isAnnotationPresent(webServiceRefClass)) {
currElements.add(new WebServiceRefElement(field, field, null));
}
else if (ejbClass != null && field.isAnnotationPresent(ejbClass)) {
currElements.add(new EjbRefElement(field, field, null));
}
// 是否存在@Resource注解
else if (field.isAnnotationPresent(Resource.class)) {
if (!this.ignoredResourceTypes.contains(field.getType().getName())) {
currElements.add(new ResourceElement(field, field, null));
}
}
});
// 与上一步相似,判断方法上是否存在这些注解
ReflectionUtils.doWithLocalMethods(targetClass, method -> {
//......省略
});
// 获取父类
targetClass = targetClass.getSuperclass();
}
// 父类不是Object则继续循环父类中的属性和方法
while (targetClass != null && targetClass != Object.class);
// 将构建好的元数据封装到InjectionMetadata中返回
return InjectionMetadata.forElements(elements, clazz);
}

现在我们再来看看去重处理的过程

public void checkConfigMembers(RootBeanDefinition beanDefinition) {
Set<InjectedElement> checkedElements = new LinkedHashSet<>(this.injectedElements.size());
for (InjectedElement element : this.injectedElements) {
Member member = element.getMember();
// 检查该beanDefinition的externallyManagedConfigMembers集合中是否已经包含该成员(属性或者方法)
if (!beanDefinition.isExternallyManagedConfigMember(member)) {
// 不包含则将该成员注册
beanDefinition.registerExternallyManagedConfigMember(member);
// 加入到已检查的集合
checkedElements.add(element);
}
}
this.checkedElements = checkedElements;
}

由于第四次,用于获取早期对象时的处理的调用,在Spring的内置处理器中也没有相应的实现,跳过

这一步和第一步一样,在AOP时将会用到,我们放到下章分析

紧接着就是填充属性的步骤了

populateBean

protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
// 在这里可进行中止填充属性操作,实现InstantiationAwareBeanPostProcessor接口
// 并postProcessAfterInstantiation返回false,则直接返回,不会再往下执行
// Spring内中的后置处理器皆返回的true
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof InstantiationAwareBeanPostProcessor) {
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {
return;
}
}
}
}
// 获得自动装配的类型,默认为0,
// 这里只有xml配置,ImportBeanDefinitionRegistrar,BeanFactoryPostProcessor可进行改变
// Spring整合Mybatis中,将Mapper的自动装配类型改成了BY_TYPE,
// 于是在Mapper得以在这里被填充SqlSessionTemplate,SqlSessionFactory属性
int resolvedAutowireMode = mbd.getResolvedAutowireMode();
if (resolvedAutowireMode == AUTOWIRE_BY_NAME || resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
MutablePropertyValues newPvs = new MutablePropertyValues(pvs);
if (resolvedAutowireMode == AUTOWIRE_BY_NAME) {
autowireByName(beanName, mbd, bw, newPvs);
}
if (resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
// 获取到依赖的bean并放到newPvs中
autowireByType(beanName, mbd, bw, newPvs);
}
// 将新的属性列表赋给旧的引用
pvs = newPvs;
}
}

autowireByName 和 autowireByType差不多,autowireByType更为复杂一些,这里只分析autowireByType的处理过程

protected void autowireByType(
String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {
// 查询非简单(Java内置 基本类型,String,Date等)的属性
String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);
// 循环所有属性名
for (String propertyName : propertyNames) {
// 获取方法参数
MethodParameter methodParam = BeanUtils.getWriteMethodParameter(pd);
// 构建一个依赖描述符
DependencyDescriptor desc = new AutowireByTypeDependencyDescriptor(methodParam, eager);
// 获取依赖的bean
// resolveDependency方法中调用了doResolveDependency,该方法我们在下一步的后置处理器调用中分析
Object autowiredArgument = resolveDependency(desc, beanName, autowiredBeanNames, converter);
// 将bean放置到属性集合中
if (autowiredArgument != null) {
pvs.add(propertyName, autowiredArgument);
}
}
}

现在,回到填充属性的过程

该第六次调用后置处理器了,这一次主要对属性和方法进行自动装配

// CommonAnnotationBeanPostProcessor 处理@Resouce注解的装配
// AutowiredAnnotationBeanPostProcessor 处理@Autowired @Value @Inject注解的装配
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof InstantiationAwareBeanPostProcessor) {
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
// 处理自动装配,将依赖的属性装配到bean中
PropertyValues pvsToUse = ibp.postProcessProperties(pvs, bw.getWrappedInstance(), beanName);
// ...省略已被废弃的代码...
pvs = pvsToUse;
}
}

这一步的逻辑也是差不多,由于AutowiredAnnotationBeanPostProcessor复杂一些,我们取AutowiredAnnotationBeanPostProcessor中的逻辑进行分析

public PropertyValues postProcessProperties(PropertyValues pvs, Object bean, String beanName) {
// 取出之前postProcessMergedBeanDefinition时解析好的元数据
// @Autowired @Value @Inject 标识的属性或方法
// findAutowiringMetadata这里有没有和第四步中的很像呢~
InjectionMetadata metadata = findAutowiringMetadata(beanName, bean.getClass(), pvs);
// 进行自动装配
metadata.inject(bean, beanName, pvs);
return pvs;
}

findAutowiringMetadata,看看和第四步有多像吧~

private InjectionMetadata findAutowiringMetadata(String beanName, Class<?> clazz, @Nullable PropertyValues pvs) {
String cacheKey = (StringUtils.hasLength(beanName) ? beanName : clazz.getName());
// 从缓存中取出
InjectionMetadata metadata = this.injectionMetadataCache.get(cacheKey);
if (InjectionMetadata.needsRefresh(metadata, clazz)) {
synchronized (this.injectionMetadataCache) {
metadata = this.injectionMetadataCache.get(cacheKey);
if (InjectionMetadata.needsRefresh(metadata, clazz)) {
if (metadata != null) {
metadata.clear(pvs);
}
// 构建元数据,找到@Autowird @Value @Inject 标识的属性或方法进行构建
metadata = buildAutowiringMetadata(clazz);
this.injectionMetadataCache.put(cacheKey, metadata);
}
}
}
return metadata;
}

自动装配过程

public void inject(Object target, @Nullable String beanName, @Nullable PropertyValues pvs) {
// 取出之前去重过的元数据列表
Collection<InjectedElement> checkedElements = this.checkedElements;
if (!elementsToIterate.isEmpty()) {
for (InjectedElement element : elementsToIterate) {
// 进行属性或方法装配
element.inject(target, beanName, pvs);
}
}
}
protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs){
// 强转成Field
Field field = (Field) this.member;
// 创建一个依赖描述符
DependencyDescriptor desc = new DependencyDescriptor(field, this.required);
// 获取到依赖的bean
value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter);
if (value != null) {
ReflectionUtils.makeAccessible(field);
// 将获取到的依赖bean利用反射装配到属性中
field.set(bean, value);
}
}
public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) {
// 获取bean
result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
return result;
}
public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter){
// 解析@Value注解
Object value = getAutowireCandidateResolver().getSuggestedValue(descriptor);
if (value != null) {
return converter.convertIfNecessary(value, type, descriptor.getTypeDescriptor());
}
// 根据类型寻找是否有匹配的beanDefinition
Map<String, Object> matchingBeans = findAutowireCandidates(beanName, type, descriptor);
if (matchingBeans.isEmpty()) {
// 为空则判断是否必须
if (isRequired(descriptor)) {
// 必须则抛出NoSuchBeanDefinitionException异常
raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
}
return null;
}
// 如果根据类型匹配出来的候选bean不止一个,则需要确认是哪一个
if (matchingBeans.size() > 1) {
// 确认出真正需要依赖的
// 先判断是否有@Primary注解的
// 没有再判断是否有实现了Priority注解的,取值最小的
// 没有最后使用属性名进行匹配
// 匹配不到则返回null
autowiredBeanName = determineAutowireCandidate(matchingBeans, descriptor);
if (autowiredBeanName == null) {
// 这里进行确认是否必须,必须则抛出异常
if (isRequired(descriptor) || !indicatesMultipleBeans(type)) {
return descriptor.resolveNotUnique(descriptor.getResolvableType(), matchingBeans);
}
else {
return null;
}
}
instanceCandidate = matchingBeans.get(autowiredBeanName);
}
if (instanceCandidate instanceof Class) {
// 调用getBean方法
instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
}
Object result = instanceCandidate;
return result;
}

getBean方法

public Object resolveCandidate(String beanName, Class<?> requiredType, BeanFactory beanFactory) {
return beanFactory.getBean(beanName);
}

以上就是自动装配的过程,再次回到填充属性的方法,进行小小的收尾

// 如果不是xml byName byType 方式,其他方式pvs皆是空值
if (pvs != null) {
// 调用set方法赋值
applyPropertyValues(beanName, mbd, bw, pvs);
}
protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) {
// 使用反射给属性赋值
bw.setPropertyValues(new MutablePropertyValues(deepCopy));
}

填充属性过程,over~

初始化过程

initializeBean

protected Object initializeBean(String beanName, Object bean, @Nullable RootBeanDefinition mbd){
// 如果bean实现了BeanNameAware,BeanClassLoaderAware,BeanFactoryAware接口
// 则进行回调相应的方法
invokeAwareMethods(beanName, bean);
// 第七次 在bean的初始化前进行处理
// 调用@PostConstruct注解的方法,Aware接口的回调方法
wrappedBean = applyBeanPostProcessorsBeforeInitialization(wrappedBean, beanName);
// 调用初始化方法
// 如果bean实现了InitializingBean接口,则调用afterPropertiesSet方法
// 如果bean还实现了自定义的初始化方法,也进行调用
// 先afterPropertiesSet,再自定义
invokeInitMethods(beanName, wrappedBean, mbd);
// 第八次 处理初始化后的bean
wrappedBean = applyBeanPostProcessorsAfterInitialization(wrappedBean, beanName);
}

以上为初始化中的大概流程,接下来我们一个个分析

首先是invokeAwareMethods

private void invokeAwareMethods(String beanName, Object bean) {
// 以下过程一目了然,就不过多分析了
if (bean instanceof Aware) {
if (bean instanceof BeanNameAware) {
((BeanNameAware) bean).setBeanName(beanName);
}
if (bean instanceof BeanClassLoaderAware) {
ClassLoader bcl = getBeanClassLoader();
if (bcl != null) {
((BeanClassLoaderAware) bean).setBeanClassLoader(bcl);
}
}
if (bean instanceof BeanFactoryAware) {
((BeanFactoryAware) bean).setBeanFactory(AbstractAutowireCapableBeanFactory.this);
}
}
}

applyBeanPostProcessorsBeforeInitialization

public Object applyBeanPostProcessorsBeforeInitialization(Object existingBean, String beanName){
Object result = existingBean;
for (BeanPostProcessor processor : getBeanPostProcessors()) {
// ImportAwareBeanPostProcessor处理ImportAware接口
// InitDestroyAnnotationBeanPostProcessor处理@PostContrust注解
// ApplicationContextAwareProcessor处理一系列Aware接口的回调方法
Object current = processor.postProcessBeforeInitialization(result, beanName);
if (current == null) {
return result;
}
result = current;
}
return result;
}

InitDestroyAnnotationBeanPostProcessor

public Object postProcessBeforeInitialization(Object bean, String beanName) throws BeansException {
// 取出在第四步解析@PostContrust @PreDestroy得到的元数据
LifecycleMetadata metadata = findLifecycleMetadata(bean.getClass());
// 调用init方法(@PostConstruct标识的)
metadata.invokeInitMethods(bean, beanName);
return bean;
}
public void invokeInitMethods(Object target, String beanName) throws Throwable {
// 只取init的元数据(还有destroy的)
Collection<LifecycleElement> checkedInitMethods = this.checkedInitMethods;
if (!initMethodsToIterate.isEmpty()) {
for (LifecycleElement element : initMethodsToIterate) {
element.invoke(target);
}
}
}
public void invoke(Object target) throws Throwable {
ReflectionUtils.makeAccessible(this.method);
// 直接反射调用
this.method.invoke(target, (Object[]) null);
}

ApplicationContextAwareProcessor的过程和invokeAwareMethods的过程类似,这里就不分析了

invokeInitMethods

protected void invokeInitMethods(String beanName, Object bean, @Nullable RootBeanDefinition mbd){
// 如果实现了InitializingBean接口,调用afterPropertiesSet方法
boolean isInitializingBean = (bean instanceof InitializingBean);
if (isInitializingBean && (mbd == null || !mbd.isExternallyManagedInitMethod("afterPropertiesSet"))) {
((InitializingBean) bean).afterPropertiesSet();
}
if (mbd != null && bean.getClass() != NullBean.class) {
// 调用自定义的初始化方法
String initMethodName = mbd.getInitMethodName();
if (StringUtils.hasLength(initMethodName) &&
!(isInitializingBean && "afterPropertiesSet".equals(initMethodName)) &&
!mbd.isExternallyManagedInitMethod(initMethodName)) {
// 自定义init方法主要在@Bean注解进行声明,取出beanDefinition中的initMethod调用就好了
invokeCustomInitMethod(beanName, bean, mbd);
}
}
}

applyBeanPostProcessorsAfterInitialization

public Object applyBeanPostProcessorsAfterInitialization(Object existingBean, String beanName)
throws BeansException {
Object result = existingBean;
for (BeanPostProcessor processor : getBeanPostProcessors()) {
// Spring内置后置处理器中,只有ApplicationListenerDetector有处理逻辑
// ApplicationListenerDetector会将实现了ApplicationListener接口的bean添加到事件监听器列表中
Object current = processor.postProcessAfterInitialization(result, beanName);
if (current == null) {
return result;
}
result = current;
}
return result;
}
public Object postProcessAfterInitialization(Object bean, String beanName){
if (bean instanceof ApplicationListener) {
// 将bean添加到事件监听器列表中
this.applicationContext.addApplicationListener((ApplicationListener<?>) bean);
}
}

以上,bean初始化完毕!

伴随着bean初始化完毕,bean就算创建完成了,本文也到此结束啦,有问题的小伙伴欢迎在下方留言哟~

下文预告:Spring源码分析之循环依赖

Spring 源码系列
  1. Spring源码分析之 IOC 容器预启动流程(已完结)
  2. Spring源码分析之BeanFactory体系结构(已完结)
  3. Spring源码分析之BeanFactoryPostProcessor调用过程(已完结)
  4. Spring源码分析之Bean的创建过程(已完结)
  5. Spring源码分析之什么是循环依赖及解决方案
  6. Spring源码分析之AOP从解析到调用
  7. Spring源码分析之事务管理(上),事物管理是spring作为容器的一个特点,总结一下他的基本实现与原理吧
  8. Spring源码分析之事务管理(下) ,关于他的底层事物隔离与事物传播原理,重点分析一下
Spring Mvc 源码系列
  1. SpringMvc体系结构
  2. SpringMvc源码分析之Handler解析过程
  3. SpringMvc源码分析之请求链过程
Mybatis 源码系列

暂定


追更,可关注我,近期有时间就文章全写完,分享纯粹为了乐趣,也有一种成就感吧,笔者这篇文章先就到这

Spring源码分析之Bean的创建过程详解的更多相关文章

  1. twitter storm源码走读之8 -- TridentTopology创建过程详解

    欢迎转载,转载请注明出处,徽沪一郎. 从用户层面来看TridentTopology,有两个重要的概念一是Stream,另一个是作用于Stream上的各种Operation.在实现层面来看,无论是str ...

  2. dubbo源码分析3-service bean的创建与发布

    dubbo源码分析1-reference bean创建 dubbo源码分析2-reference bean发起服务方法调用 dubbo源码分析3-service bean的创建与发布 dubbo源码分 ...

  3. Spring 源码分析之 bean 依赖注入原理(注入属性)

         最近在研究Spring bean 生命周期相关知识点以及源码,所以打算写一篇 Spring bean生命周期相关的文章,但是整理过程中发现涉及的点太多而且又很复杂,很难在一篇文章中把Spri ...

  4. Spring源码分析专题 —— IOC容器启动过程(上篇)

    声明 1.建议先阅读<Spring源码分析专题 -- 阅读指引> 2.强烈建议阅读过程中要参照调用过程图,每篇都有其对应的调用过程图 3.写文不易,转载请标明出处 前言 关于 IOC 容器 ...

  5. 【Spring源码分析】Bean加载流程概览

    代码入口 之前写文章都会啰啰嗦嗦一大堆再开始,进入[Spring源码分析]这个板块就直接切入正题了. 很多朋友可能想看Spring源码,但是不知道应当如何入手去看,这个可以理解:Java开发者通常从事 ...

  6. 【Spring源码分析】Bean加载流程概览(转)

    转载自:https://www.cnblogs.com/xrq730/p/6285358.html 代码入口 之前写文章都会啰啰嗦嗦一大堆再开始,进入[Spring源码分析]这个板块就直接切入正题了. ...

  7. Spring 源码分析之 bean 实例化原理

    本次主要想写spring bean的实例化相关的内容.创建spring bean 实例是spring bean 生命周期的第一阶段.bean 的生命周期主要有如下几个步骤: 创建bean的实例 给实例 ...

  8. Spring源码分析:Bean加载流程概览及配置文件读取

    很多朋友可能想看Spring源码,但是不知道应当如何入手去看,这个可以理解:Java开发者通常从事的都是Java Web的工作,对于程序员来说,一个Web项目用到Spring,只是配置一下配置文件而已 ...

  9. 【转载】Spring 源码分析之 bean 实例化原理

    本次主要想写spring bean的实例化相关的内容.创建spring bean 实例是spring bean 生命周期的第一阶段.bean 的生命周期主要有如下几个步骤: 创建bean的实例 给实例 ...

随机推荐

  1. Linux的MySQL安装方法

    第一种: APT方式安装 在ubuntu系统的apt软件仓库中,默认存在MySQL数据库 在用户模式下使用命令:  apt/apt-get install mysql-server mysql-cli ...

  2. BurpSuite抓取本地包方法

    本文重点在介绍抓本地包, 而非介绍抓包步骤 Burpsuite配置 默认配置即可 Chrome 浏览器配置 Falcon Proxy扩展程序配置浏览器代理. 需要抓包的网页是个本地搭建的网址, 一般会 ...

  3. 简单两步实现Android app 本地设置信息的保存与调用

    调用值 SharedPreferences preferences = this.getSharedPreferences("mspda", 0); lblVer.setText( ...

  4. 你在开发过程中使用Git Rebase还是Git Merge?

    摘要:在git里面经常的一个争论是到底用rebase还是用merge? 1. 痛苦吗?代码历史中的迷失羔羊 我们先来看一个真实的代码提交历史图形化截图: 图片源自 https://storage.kr ...

  5. 一起构建Python生长土壤

    环境 环境安装 1. 解释器 Python https://www.python.org/ 2. IDE Pycharm https://www.jetbrains.com/pycharm/downl ...

  6. 【小白学PyTorch】18 TF2构建自定义模型

    [机器学习炼丹术]的炼丹总群已经快满了,要加入的快联系炼丹兄WX:cyx645016617 参考目录: 目录 1 创建自定义网络层 2 创建一个完整的CNN 2.1 keras.Model vs ke ...

  7. unity 3d 三、空间与运动

    3D游戏编程第三次作业 简答并用程序验证[建议做] 游戏对象运动的本质是什么? 游戏对象运动的本质是游戏对象Position.Rotate.Scale属性数值的变化. 请用三种方法以上方法,实现物体的 ...

  8. requests和正则表达式爬取猫眼电影Top100练习

    1 import requests 2 import re 3 from multiprocessing import Pool 4 from requests.exceptions import R ...

  9. 如何设置UITextField的焦点?

    需要一进VIEW就显示键盘. 在viewDidLoad函数中调用:[yourUITextField becomeFirstResponder];

  10. “工程师思维” VS. “学院派思维”

    1.与"工程师"交流,他们致力于"更快.高质量"交付,他们会借助时下最稳定.最完善的中间件或者框架,他们更谦虚,喜欢和志同道合的朋友交流分享协作,视角更宽,往往 ...