题意:给定一个图,你家在0,让你找出到沿海的最短路径。

析:由于这个题最多才10个点,那么就可以用Floyd算法,然后再搜一下哪一个是最短的。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
int d[maxn][maxn];
int a[maxn]; int solve(){
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
for(int k = 0; k < n; ++k)
d[i][j] = Min(d[i][j], d[i][k]+d[k][j]);
int ans = INF;
for(int i = 0; i < n; ++i)
if(a[i] == 1) ans = Min(ans, d[0][i]);
return ans;
} int main(){
while(scanf("%d", &n) == 1){
memset(a, -1, sizeof(a));
int x, y;
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j) d[i][j] = INF; for(int i = 0; i < n; ++i){
scanf("%d %d", &m, &a[i]);
for(int j = 0; j < m; ++j){
int u, w;
scanf("%d %d", &u, &w);
d[i][u] = w;
}
} int ans = solve();
printf("%d\n", ans);
}
return 0;
}

  

HDU 3665 Seaside (最短路,Floyd)的更多相关文章

  1. hdu 3665 Seaside floyd+超级汇点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3665 题意分析:以0为起点,求到Sea的最短路径. 所以可以N为超级汇点,使用floyd求0到N的最短 ...

  2. HDU1869---(最短路+floyd)

    http://acm.hdu.edu.cn/showproblem.php?pid=1869 思路:最短路+floyd 分析:1 题目是要求所有的数据能否满足“六度分离”,那么我们就想到所有点之间的最 ...

  3. ACM/ICPC 之 最短路-Floyd+SPFA(BFS)+DP(ZOJ1232)

    这是一道非常好的题目,融合了很多知识点. ZOJ1232-Adventrue of Super Mario 这一题折磨我挺长时间的,不过最后做出来非常开心啊,哇咔咔咔 题意就不累述了,注释有写,难点在 ...

  4. 模板C++ 03图论算法 2最短路之全源最短路(Floyd)

    3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...

  5. 最短路 - floyd算法

    floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...

  6. hdu 4568 Hunter 最短路+dp

    Hunter Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  7. 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...

  8. 【ACM程序设计】求短路 Floyd算法

    最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...

  9. HDU 2066 最短路floyd算法+优化

    http://acm.hdu.edu.cn/showproblem.php?pid=206 题意 从任意一个邻居家出发 到达任意一个终点的 最小距离 解析 求多源最短路 我想到的是Floyd算法 但是 ...

随机推荐

  1. poj 1185 炮兵阵地(三维状态压缩dP)

    题目:http://poj.org/problem?id=1185 思路: d[i][j][k]表示第i行的状态为第k个状态,第i-1行的状态为第j个状态的时候 的炮的数量. 1表示放大炮, 地形状态 ...

  2. Android ContentProvider和Uri详解 (绝对全面)

        ContentProvider的基本概念 : 1.ContentProvider为存储和读取数据提供了统一的接口 2.使用ContentProvider,应用程序可以实现数据共享 3.andr ...

  3. HDU 4870 Rating (2014 Multi-University Training Contest 1)

    Rating Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  4. UVa 1515 (最小割) Pool construction

    题意: 输入一个字符矩阵,'.'代表洞,'#'代表草地.可以把草改成洞花费为d,或者把洞改成草花费为f,最后还要在草和洞之间修围栏花费为b. 但要保证最外一圈是草,求最小费用. 分析: 还不是特别理解 ...

  5. bzoj1875: [SDOI2009]HH去散步

    终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...

  6. uva 10047 The Monocycle(搜索)

    好复杂的样子..其实就是纸老虎,多了方向.颜色两个状态罢了,依旧是bfs. 更新的时候注意处理好就行了,vis[][][][]要勇敢地开. 不过这个代码交了十几遍的submission error,手 ...

  7. POI读取Word与Excel

    import java.io.BufferedWriter; import java.io.FileInputStream; import java.io.FileNotFoundException; ...

  8. Doubango ims 框架 分析之 多媒体部分

    序言 RTP提供带有实时特性的端对端数据传输服务,传输的数据如:交互式的音频和视频.那些服务包括有效载荷类型定义,序列号,时间戳和传输监测控制.应用程序在UDP上运行RTP来使用它的多路技术和chec ...

  9. java 访问器方法中对象引用的问题

    "注意不要编写返回引用可变对象的访问器方法".因为会破坏类的封装性,引用的内容可能会被改变,产生业务逻辑上的错误. 什么是可变对象? 先要搞清楚java中值传递和引用传递的问题,总结如下: 1.对象就 ...

  10. Oracle 课程八之跟踪事件set event

    一.Oracle跟踪文件 Oracle跟踪文件分为三种类型: 一种是后台报警日志文件,记录数据库在启动.关闭和运行期间后台进程的活动情况,如表空间创建.回滚段创建.某些alter命令.日志切换.错误消 ...