分析(官方题解):

一点感想:

首先上面那个等式成立,然后就是求枚举gcd算贡献就好了,枚举gcd当时赛场上写了一发O(nlogn)的反演,写完过了样例,想交发现结束了

吐槽自己手速慢,但是发了题解后发现,这题连O(n)欧拉函数前缀和的都卡了,幸亏没交,还是太年轻

对于官方题解说sqrt(n)优化(其实就是n/(小于n一段数)结果是一样的,也不算什么分块),还是很简单的,做反演题的时候看到过很多,只是忘记了

如果不会请看这篇解题报告http://wenku.baidu.com/view/fbe263d384254b35eefd34eb.html

细节处理:注意特判x=1的情况,然后处理(x-1)的逆元,等比数列求和需要用,感觉这题还是能做出来的

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1e6+;
const LL mod = 1e9+;
int phi[N],T;
LL sum[N],x,n;
LL qpow(LL a,LL b){
LL ret=;
while(b){
if(b&)ret=(ret*a)%mod;
b>>=;
a=(a*a)%mod;
}
return ret;
}
inline void up(LL &x,LL y){
x+=y;if(x>=mod)x-=mod;
}
int main(){
phi[]=;
for(int i=;i<=N-;++i)if(!phi[i]){
for(int j=i;j<=N-;j+=i){
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
for(int i=;i<=N-;++i)sum[i]=sum[i-]+1ll*phi[i];
scanf("%d",&T);
while(T--){
scanf("%I64d%I64d",&x,&n);
if(x==){
printf("0\n");continue;
}
LL inv=qpow(x-,mod-),ret=;
for(int i=,j;i<=n;i=j+){
j=n/(n/i);
LL a0=qpow(x,i),qn=qpow(x,j-i+);
up(qn,mod-);
a0=a0*qn%mod*inv%mod;
up(a0,mod-(j-i+));
a0=(2ll*sum[n/i]-)%mod*a0%mod;
up(ret,a0);
}
printf("%I64d\n",ret);
}
return ;
}

HDU5780 gcd (BestCoder Round #85 E) 欧拉函数预处理——分块优化的更多相关文章

  1. 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)

    题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...

  2. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  3. B - GuGuFishtion(莫比乌斯 欧拉函数 预处理mu函数的欧拉函数的模板)

    题目链接:https://cn.vjudge.net/contest/270608#problem/B 题目大意:题目中说,就是对欧拉函数的重新定义的一种函数的求和. 证明方法: AC代码: #inc ...

  4. GCD - Extreme (II) for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } 推导分析+欧拉函数

    /** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for ...

  5. GCD - Extreme (II) UVA - 11426 欧拉函数与gcd

    题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b ...

  6. GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导

    Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...

  7. [NOI2010]能量采集 BZOJ2005 数学(反演)&&欧拉函数,分块除法

    题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...

  8. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  9. HDU5597/BestCoder Round #66 (div.2) GTW likes function 打表欧拉函数

    GTW likes function      Memory Limit: 131072/131072 K (Java/Others) 问题描述 现在给出下列两个定义: f(x)=f_{0}(x)=\ ...

随机推荐

  1. JavaSE GUI显示列表 JTable的刷新 重新加载新的数据

    JTable在显示所有数据之后,假如需要搜索某个名字,则会获取新的列表数据. 假设datas是JTable的数据,定义为: private Vector<Vector> datas = n ...

  2. java中的freopen

    在做ACM题目的时候,为节省输入测试数据的时间,我们通常将数据复制到一个文本文档里,然后从文档里读出,避免在控制台一个数据一个数据的输入. 之前一直用的C/C++,freopen用起来很方便,如下: ...

  3. HTML5入门十一---Canvas画布实现画图(二)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. 62. Unique Paths

    题目: A robot is located at the top-left corner of a m x ngrid (marked 'Start' in the diagram below). ...

  5. P31、面试题2:实现Singleton模式

    题目:设计一个类,我们只能生成该类的一个实例 java中单例模式是一种常见的设计模式,单例模式分三种:懒汉式单例.饿汉式单例.登记式单例三种. 单例模式有以下特点: 1.单例类只能有一个实例. 2.单 ...

  6. Tornado 中的 get() 或 post() 方法

    ---恢复内容开始--- Tornado 中的 get() 或 post() 方法 请求处理程序和请求参数 Tornado 的 Web 程序会将 URL 或者 URL 范式映射到 tornado.we ...

  7. jboolean

    bool为C中变量类型,jboolean 为JNI中变量类型,boolean为Java中变量类型:jboolean在C语言的定义为:typedef unsigned char jboolean;uns ...

  8. Support Library官方教程(3)android studio中导入支援包

    Support Library Setup How you setup the Android Support Libraries in your development project depend ...

  9. C结构体之位域(位段)

    C结构体之位域(位段) 有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省存储空间,并使处理简便,C ...

  10. CentOS5.5 正式开始安装 Oracle 11g r2(图形界面安装)

    一.下载oracle 官方网站, 可以下载最新版本 Oracle Database 11g Release http://www.oracle.com/index.html CentOS5. i386 ...