分析(官方题解):

一点感想:

首先上面那个等式成立,然后就是求枚举gcd算贡献就好了,枚举gcd当时赛场上写了一发O(nlogn)的反演,写完过了样例,想交发现结束了

吐槽自己手速慢,但是发了题解后发现,这题连O(n)欧拉函数前缀和的都卡了,幸亏没交,还是太年轻

对于官方题解说sqrt(n)优化(其实就是n/(小于n一段数)结果是一样的,也不算什么分块),还是很简单的,做反演题的时候看到过很多,只是忘记了

如果不会请看这篇解题报告http://wenku.baidu.com/view/fbe263d384254b35eefd34eb.html

细节处理:注意特判x=1的情况,然后处理(x-1)的逆元,等比数列求和需要用,感觉这题还是能做出来的

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1e6+;
const LL mod = 1e9+;
int phi[N],T;
LL sum[N],x,n;
LL qpow(LL a,LL b){
LL ret=;
while(b){
if(b&)ret=(ret*a)%mod;
b>>=;
a=(a*a)%mod;
}
return ret;
}
inline void up(LL &x,LL y){
x+=y;if(x>=mod)x-=mod;
}
int main(){
phi[]=;
for(int i=;i<=N-;++i)if(!phi[i]){
for(int j=i;j<=N-;j+=i){
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
for(int i=;i<=N-;++i)sum[i]=sum[i-]+1ll*phi[i];
scanf("%d",&T);
while(T--){
scanf("%I64d%I64d",&x,&n);
if(x==){
printf("0\n");continue;
}
LL inv=qpow(x-,mod-),ret=;
for(int i=,j;i<=n;i=j+){
j=n/(n/i);
LL a0=qpow(x,i),qn=qpow(x,j-i+);
up(qn,mod-);
a0=a0*qn%mod*inv%mod;
up(a0,mod-(j-i+));
a0=(2ll*sum[n/i]-)%mod*a0%mod;
up(ret,a0);
}
printf("%I64d\n",ret);
}
return ;
}

HDU5780 gcd (BestCoder Round #85 E) 欧拉函数预处理——分块优化的更多相关文章

  1. 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)

    题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...

  2. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  3. B - GuGuFishtion(莫比乌斯 欧拉函数 预处理mu函数的欧拉函数的模板)

    题目链接:https://cn.vjudge.net/contest/270608#problem/B 题目大意:题目中说,就是对欧拉函数的重新定义的一种函数的求和. 证明方法: AC代码: #inc ...

  4. GCD - Extreme (II) for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } 推导分析+欧拉函数

    /** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for ...

  5. GCD - Extreme (II) UVA - 11426 欧拉函数与gcd

    题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b ...

  6. GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导

    Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...

  7. [NOI2010]能量采集 BZOJ2005 数学(反演)&&欧拉函数,分块除法

    题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...

  8. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  9. HDU5597/BestCoder Round #66 (div.2) GTW likes function 打表欧拉函数

    GTW likes function      Memory Limit: 131072/131072 K (Java/Others) 问题描述 现在给出下列两个定义: f(x)=f_{0}(x)=\ ...

随机推荐

  1. SDUT2087离散事件模拟-银行管理

    呃,这个题,我只想仰天长啸:无语死我了,还动用了繁和帅锅给我改,妹的,做题一定要仔细仔细再仔细啊,这种小错误都犯真是该打. 题目描述 现在银行已经很普遍,每个人总会去银行办理业务,一个好的银行是要考虑 ...

  2. HtmlAgilityPack 总结(一)

    一个解析html的C#类库HtmlAgilityPack, HtmlAgilityPack是一个基于.Net的.第三方免费开源的微型类库,主要用于在服务器端解析html文档(在B/S结构的程序中客户端 ...

  3. 【POJ3243】拓展BSGS(附hash版)

    上一篇博文中说道了baby step giant step的方法(简称BSGS),不过对于XY mod Z = K ,若x和z并不互质,则不能直接套用BSGS的方法了. 为什么?因为这时候不存在逆元了 ...

  4. 【转】 wget 命令用法详解

    wget是在Linux下开发的开放源代码的软件,作者是Hrvoje Niksic,后来被移植到包括Windows在内的各个平台上.它有以下功能和特点:(1)支持断点下传功能:这一点,也是网络蚂蚁和Fl ...

  5. 近期概况&总结

    下午考完英语的学考就要放假啦,是衡中的假期啊QAQ 所以灰常的激动,一点也不想写题(我不会告诉你其实假期只有一个晚上.. 自从CTSC&APIO回来之后就一直在机房颓颓颓,跟着zcg学了很多新 ...

  6. Java并发:Callable、Future和FutureTask

    Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一 ...

  7. 解决PHP开启gd库无效的问题

    最近需要重新安装PHP,以前一直使用的都是XAMPP,基本上都不需要自己配置,现在准备直接下载官方原版的Apache和PHP,自己来慢慢摸索如何继承配置. 我下载的Apache版本为2.2.25,PH ...

  8. vim编程 插入 保存不退出 保存退出 退出不保存 另存为其他文件名 保存覆盖现有文件

    ---恢复内容开始--- 在xshell里写代码,如果需要编辑代码,可以输入  vim+ xxx.py  ,进入vim编辑界面 这里的xxx.py表示  python的存储文件,后缀名是.py. 1. ...

  9. C# Index 定义索---引具体使用

    using System;using System.Collections.Generic;namespace TestThisIndex{    public class Program    {  ...

  10. string.length()与-1比较为什么会出现匪夷所思的结果

    今天调试程序发现了个匪夷所思的事情,-1与string.length()比较永远是-1大,看下面代码 #include<iostream> #include<string> u ...